Derivation of the Multi-fluid Model using the Time-Volume Averaging Method in Porous Body

Sang Yong Lee*, Chan Eok Park, Eun Kee Kim
KEPCO E\&C Company, Inc., 150 Deokjin-dong, Yuseong-gu, Daejeon, 305-353
*Corresponding author:sanglee@kepco-enc.com

1. Time averaging operations

The local instantaneous balance equation reads as [1], $\frac{\partial}{\partial t}\left(\rho_{k} \psi_{k}\right)+\nabla \cdot\left(\rho_{k} \psi_{k} \mathbf{u}_{k}\right)=-\nabla \cdot \mathbf{J}_{k}+\rho_{k} \phi_{k}$
where $\rho_{k}, \psi_{k}, \mathbf{u}_{k}, \mathbf{J}_{k}$ and ϕ_{k} are the density, property of extensive characteristics, velocity, flux and source of k-phase, respectively. Nomenclatures for other variables are found in [2]. Table-1 shows the field variables. $e_{k}, \mathbf{q}_{k}, \quad p_{k}, \gamma_{k}, \mathbf{g}_{k}, \dot{q}_{k}, \mathbf{M}_{k}, E_{k}$ are internal energy, heat flux, pressure, vaporization, gravity and internal heat rate, interfacial momentum and energy sources respectively. \mathbf{T}_{k} is the stress tensor and is decomposed into pressure and shear.

Table-1. Field variables

	ψ_{k}	\mathbf{J}_{k}	ϕ_{k}	I_{k}
Mass	1	0	0	γ_{k}
Momentum	\mathbf{u}_{k}	$-\mathbf{T}_{k}\left(p_{k} \mathbf{I}-\mathbb{U}_{k}\right)$	\mathbf{g}_{k}	\mathbf{M}_{k}
Energy	$e_{k}+\mathbf{u}_{k}^{2} / 2$	$\mathbf{q}_{k}-\mathbf{T}_{k} \cdot \mathbf{u}_{k}$	$\mathbf{g}_{k} \cdot \mathbf{u}_{k}+\dot{q}_{k} / \rho_{k}$	E_{k}

The time averaged balance equation for any property ψ_{k} of k-phase can be presented as,

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\overline{\rho_{k} \psi_{k}}\right)+\nabla \cdot\left(\overline{\rho_{k} \psi_{k} \mathbf{u}_{k}}\right)=-\nabla \cdot \overline{\mathbf{J}_{k}}+\overline{\rho_{k} \phi_{k}}+I_{k} \\
& I_{k} \equiv-\frac{1}{\Delta t} \sum_{j}\left\{\frac{1}{u_{n i}}\left[\left(\rho_{k} \psi_{k}\right) \mathbf{n}_{k} \cdot\left(\mathbf{u}_{k}-\mathbf{u}_{i}\right)-\left(\mathbf{n}_{k} \cdot \mathbf{J}_{k}\right)\right]\right\} \tag{2}
\end{align*}
$$

where the bar over a quantity indicates the timeaveraging operation. \mathbf{n} is the surface normal vector in this paper. Considering the time-fluctuating terms, the time-averaged balance equation can be represented by using weighted mean variables as, ($\overline{\mathbf{J}_{k}^{T}}$; turbulent effects);

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\overline{\rho_{k} \widehat{\psi_{k}}}\right)+\nabla \cdot\left(\overline{\rho_{k} \widehat{\psi}_{k}} \widehat{\mathbf{u}_{k}}\right)=-\nabla \cdot\left(\overline{\bar{J}_{k}}+\overline{\mathbf{J}_{k}^{T}}\right)+\overline{\rho_{k} \phi_{k}}+I_{k} \tag{3}
\end{equation*}
$$

Figure-1. Porous control volume

2. Local volume averaging operations

As shown in figure-1, V, A and ε indicate porosity, volume and area. Superscript T, F, S, I mean total, fluid, structure and internal, respectively[3].
$V^{T}=V^{F}+V^{S}, A^{T}=A^{F}+A^{S}, \varepsilon^{V} \equiv V^{F} / V^{T}, \varepsilon^{A} \equiv A^{F} / A^{T}$

Define phase average of scalar, vector or tensor \mathscr{R}_{k},
$\left[\boldsymbol{R}_{k}\right]^{V} \equiv\left(1 / V^{T}\right) \int_{V^{\vDash}} \boldsymbol{\mathcal { R }}_{k} d V ;\left[\mathcal{R}_{k}\right]^{A} \equiv\left(1 / A^{T}\right) \int_{A^{F}} \boldsymbol{\mathcal { R }}_{k} d A$.
and define the intrinsic phase average, $\llbracket \mathcal{R}_{k} \rrbracket^{V} \equiv\left(1 / V^{F}\right) \int_{V^{F}} \boldsymbol{\mathcal { R }}_{k} d V ; \llbracket \boldsymbol{R}_{k} \rrbracket^{A} \equiv\left(1 / V^{F}\right) \int_{A^{F}} \boldsymbol{\mathcal { R }}_{k} d A$.

Absence of the field in structure yields the porosity;
$\int_{V^{ }} \mathcal{R}_{k} d V=\int_{V^{r}} \boldsymbol{\mathcal { R }}_{k} d V,\left[\mathcal{R}_{k}\right]^{V}=\varepsilon^{V} \llbracket \mathcal{R}_{k} \rrbracket^{V}$
$\left.\int_{A^{F}} \mathscr{R}_{k} d A=\int_{A^{T}} \mathcal{R}_{k} d A, \quad\left[\mathcal{R}_{k}\right]^{A}=\varepsilon^{A} \llbracket \mathscr{R}_{k}\right]^{A}$
Divergence theorem reads,
$\int_{V^{F}} \nabla \cdot \boldsymbol{\mathcal { R }}_{k} d V=\int_{A^{F}} \boldsymbol{\mathcal { R }}_{k} \cdot \mathbf{n}^{F} d A+\int_{A^{I}} \boldsymbol{\mathcal { R }}_{k} \cdot \mathbf{n}^{I} d A$,
Divergence of an intrinsic local volume average;[2];
$\nabla \cdot\left(\int_{V^{F}} \mathcal{R}_{k} d V\right)=\int_{A^{F}} \mathcal{R}_{k} \cdot \mathbf{n}^{F} d A$.
Combining it with divergence theorem yields;

$$
\begin{equation*}
\int_{V^{E}} \nabla \cdot \mathscr{R}_{k} d V=\nabla \cdot\left(\int_{V^{E}} \mathcal{R}_{k} d V\right)+\int_{A^{\prime}} \mathscr{\mathcal { R }}_{k} \cdot \mathbf{n}^{I} d A . \tag{11}
\end{equation*}
$$

Time-volume averaged balance equation can be obtained by integrating (3) over V^{F} and dividing the integration by the volume element V^{T} as;
$\left(1 / V^{T}\right) \int_{v^{r}}\left(\frac{\partial}{\partial t}\left(\overline{\rho_{k} \psi_{k}}\right)+\nabla \cdot\left(\overline{\rho_{k} \psi_{k}} \widehat{\mathbf{u}_{k}}\right)+\nabla \cdot\left(\overline{\mathbf{J}_{k}}+\overline{\mathbf{J}_{k}^{T}}\right)-\overline{\rho_{k} \phi_{k}}-I_{k}\right) d V=0$
No-slip condition on the internal surface reads,
$\frac{1}{V^{T}} \int_{A^{\prime}}\left(\widehat{\rho_{k} \psi_{k}} \widehat{\boldsymbol{u}_{k}}\right) \cdot d \mathbf{A}^{I}=0$
A is the area normal vector. Individual terms yield;
$\frac{1}{V^{T}} \int_{V^{F}} \frac{\partial}{\partial t}\left(\widehat{\rho_{k} \psi_{k}}\right) d V=\frac{\partial}{\partial t}\left[\frac{1}{V^{T}} \int_{V^{₹}}\left(\overline{\rho_{k}} \widehat{\psi_{k}}\right) d V\right]=\frac{\partial}{\partial t}\left(\varepsilon^{v} \llbracket \overline{\rho_{k} \psi_{k}} \rrbracket^{v}\right)$
$\left.\frac{1}{V^{T}} \int_{v^{\Sigma}} \nabla \cdot\left(\overline{\rho_{k}}{\widehat{\psi_{k}}}_{k} \widehat{\mathbf{u}_{k}}\right) d V=\nabla \cdot\left(\frac{1}{V^{T}} \int_{v^{₹}} \overline{\rho_{k}} \widehat{\psi}_{k} \widehat{\mathbf{u}_{k}} d V\right)=\nabla \cdot\left(\varepsilon^{\nu} \llbracket \overline{\rho_{k} \psi_{k}} \widehat{\mathbf{u}_{k}}\right]^{\nu}\right)$
$\frac{1}{V^{T}} \int_{V^{F}} \nabla \cdot\left(\overline{\mathbf{J}_{k}} \overline{\mathbf{J}_{k}^{T}}\right) d V=\nabla \cdot\left[\frac{1}{V^{T}} \int_{V^{F}}\left(\overline{\mathbf{J}_{k}}+\overline{\mathbf{J}_{k}^{T}}\right) d V\right]+\frac{1}{V^{T}} \int_{A^{\prime}}\left(\overline{\mathbf{J}_{k}}+\overline{\mathbf{J}_{k}^{T}}\right) \cdot d \mathbf{A}^{t}$
$=\nabla \cdot\left[\varepsilon^{v}\left(\llbracket \overline{\mathbf{J}_{k}} \rrbracket^{v}+\llbracket\left(\overline{\mathbf{J}_{k}^{T}}\right]^{v}\right)\right]+\frac{1}{V^{T}} \int_{A^{\prime}}\left(\overline{\mathbf{J}_{k}}+\overline{\mathbf{J}_{k}^{T}}\right) \cdot d \mathbf{A}^{t}$
$\left.\frac{1}{V^{T}} \int_{V^{\vee}} \overline{\rho_{k} \phi_{k}} d V=\varepsilon^{v} \llbracket \overline{\rho_{k} \phi_{k}}\right]^{v}$.
$\frac{1}{V^{T}} \int_{V^{V}} I_{k} d V=\varepsilon^{V} \llbracket I_{k} \rrbracket^{V}$.
Using the above results one can get;
$\left.\left.\left.\frac{\partial}{\partial t}\left(\varepsilon^{v} \llbracket \overline{\rho_{k}} \widehat{\psi_{k}}\right]^{v}\right)+\nabla \cdot\left(\varepsilon^{v} \llbracket \overline{\rho_{k} \hat{\psi}_{k}} \widehat{\mathbf{u}_{k}}\right]^{v}\right)=+\varepsilon^{v} \| \overline{\rho_{k} \phi_{k}}\right]^{v}$
$-\nabla \cdot\left[\varepsilon^{v}\left(\llbracket \overline{\mathbf{J}_{k}} \rrbracket^{V}+\llbracket \overline{\mathbf{J}_{k}^{T}} \rrbracket^{v}\right)\right]-\frac{1}{V^{T}} \int_{A^{I}}\left(\overline{\mathbf{J}_{k}}+\overline{\mathbf{J}_{k}^{T}}\right) \cdot d \mathbf{A}^{I}+\varepsilon^{v} \llbracket I_{k} \rrbracket^{v}$
Define following weighted mean variables;

$$
\begin{align*}
& \left\langle\left\langle\widehat{\psi_{k}}\right\rangle\right\rangle^{v} \equiv\left(\llbracket \alpha_{k} \overline{\bar{\sigma}_{k}} \widehat{\psi_{k}} \rrbracket^{v} / \llbracket \alpha_{k} \overline{\overline{\rho_{k}}} \rrbracket^{v}\right)=\llbracket \alpha_{k} \widehat{\psi_{k}} \rrbracket^{v} / \llbracket \alpha_{k} \rrbracket^{v} \tag{16}\\
& C_{\varphi k}^{v}=\left(\llbracket \alpha_{k} \widehat{\psi_{k}} \widehat{u}_{k} \rrbracket^{v}\right) /\left(\llbracket \alpha_{k} \rrbracket^{\nu}\left\langle\left\langle\widehat{\psi_{k}}\right\rangle^{v}\left\langle\left\langle\widehat{u}_{k}\right\rangle\right\rangle^{v}\right)\right. \tag{17}\\
& \left\langle\left\langle\overline{\bar{J}_{k}}\right\rangle\right\rangle^{v} \equiv \llbracket \alpha_{k} \overline{\bar{J}_{k}} \rrbracket^{v} / \llbracket \alpha_{k} \rrbracket^{v},\left\langle\left\langle\mathbf{J}_{k}^{T}\right\rangle\right\rangle^{v} \equiv \llbracket \alpha_{k} \mathbf{J}_{k}^{T} \rrbracket^{v} / \llbracket \alpha_{k} \rrbracket^{v} \tag{18}\\
& \left.\llbracket \alpha_{k} \overline{\overline{\rho_{k}} \phi_{k}} \rrbracket^{v}=\overline{\overline{\rho_{k}}} \llbracket \alpha_{k} \rrbracket^{v} \llbracket \bar{\phi}_{k}\right]^{v} \tag{19}
\end{align*}
$$

Finally one can get;
$\frac{\partial}{\partial t}\left(\varepsilon^{v} \llbracket \alpha_{k} \rrbracket^{v} \overline{\overline{\rho_{k}}}\left\langle\left\langle\widehat{\psi_{k}}\right\rangle\right\rangle^{v}\right)+\nabla \cdot\left(C_{\psi k}^{v} \varepsilon^{v} \llbracket \alpha_{k} \rrbracket^{v} \overline{\overline{\rho_{k}}}\left\langle\left\langle\widehat{\psi_{k}}\right\rangle\right\rangle^{v}\left\langle\left\langle\widehat{\mathbf{u}_{k}}\right\rangle\right\rangle^{v}\right)$

$$
\begin{align*}
& =-\nabla \cdot\left[\varepsilon^{v}\left(\llbracket \alpha_{k} \rrbracket^{v}\left\langle\left\langle\overline{\bar{J}_{k}}\right\rangle\right\rangle^{v}+\llbracket \alpha_{k} \rrbracket^{v}\left\langle\left\langle\overline{\mathbf{F}_{k}^{\bar{V}}}\right\rangle\right\rangle^{v}\right)\right] \\
& -\frac{1}{V} \int_{A^{\prime}} \overline{\overline{\mathbf{J}_{k}}} \cdot d \mathbf{A}^{I}+\varepsilon^{v} \llbracket \alpha_{k} \rrbracket^{v} \overline{\rho_{k}} \llbracket \widehat{\phi}_{k} \rrbracket^{v}+\varepsilon^{v} \llbracket I_{k} \rrbracket^{v} \tag{20}
\end{align*}
$$

3．Multi－fluid balance equations

Using the table－1，one can get mass balance equation；
$\frac{\partial}{\partial t}\left(\varepsilon^{v} \llbracket \alpha_{k} \rrbracket^{v} \overline{\overline{\rho_{k}}}\right)+\nabla \cdot\left(\varepsilon^{v} \llbracket \alpha_{k} \rrbracket^{v} \overline{\overline{\rho_{k}}}\left\langle\left\langle\widehat{\mathbf{u}_{k}}\right\rangle\right\rangle^{v}\right)=\varepsilon^{v} \llbracket \gamma_{k} \rrbracket^{v}$
Dropping out the averaging operators reads；
$\frac{\partial}{\partial t}\left(\varepsilon \alpha_{k} \rho_{k}\right)+\nabla \cdot\left(\varepsilon \alpha_{k} \rho_{k} \mathbf{u}_{k}\right)=\varepsilon \gamma_{k}$
Similar procedure with unity $C_{\mathbf{u}_{k}}^{V}$ ，the momentum balance equation is written as；

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\varepsilon \alpha_{k} \rho_{k} \mathbf{u}_{k}\right)+\nabla \cdot\left(\varepsilon \alpha_{k} \rho_{k} \mathbf{u}_{k} \mathbf{u}_{k}\right)=-\nabla \cdot\left(\varepsilon \alpha_{k} p_{k} \mathbf{I}\right)+\varepsilon \alpha_{k} \rho_{k} \mathbf{g}_{k} \tag{23}\\
& \left.+\nabla \cdot\left(\varepsilon \alpha_{k}\left(\widetilde{\mathscr{T}}_{k}+\widetilde{\mathbb{U}}_{k}^{T}\right)\right)\right)-\left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k}\left(p_{k} \mathbf{I}-\widetilde{U}_{k}\right) \cdot d \mathbf{A}^{T}+\varepsilon \mathbf{M}_{k},
\end{align*}
$$

Also，similar procedure with unity $C_{e_{k}}^{V}$ ，energy equation reads；

$$
\begin{align*}
& (\partial / \partial t)\left(\varepsilon \rho_{k} \alpha_{k}\left(e_{k}+\left(\mathbf{u}_{k}^{2} / 2\right)\right)\right)+\nabla \cdot\left(\varepsilon \rho_{k} \alpha_{k}\left(e_{k}+\left(\mathbf{u}_{k}^{2} / 2\right)\right) \mathbf{u}_{k}\right)= \\
& +\varepsilon \rho_{k} \alpha_{k} \mathbf{g}_{k} \cdot \mathbf{u}_{k}-\nabla \cdot\left(\varepsilon \alpha_{k}\left(\mathbf{q}_{k}+\mathbf{q}_{k}^{T}\right)\right)-\nabla \cdot\left(\varepsilon \alpha_{k}\left(p_{k} \mathbf{I}-\widetilde{\overleftarrow{\Xi}}_{k}\right) \cdot \mathbf{u}_{k}\right) \tag{24}\\
& -\left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k}\left(\mathbf{q}_{k}-\mathbf{T}_{k} \cdot \mathbf{u}_{k}\right) \cdot d \mathbf{A}^{I}+\varepsilon E_{k} \tag{25}
\end{align*}
$$

Momentum／energy sources are modeled as follows［1］
$\mathbf{M}_{k}=\mathbf{M}_{k}^{\gamma}+p_{k i} \nabla \alpha_{k}+\mathbf{M}_{i k}-\nabla \alpha_{k} \cdot \widetilde{屯}_{k i}$,
$E_{k}=\gamma_{k}\left(h_{k i}+\mathbf{u}_{k i} \cdot \mathbf{u}_{k}-\mathbf{u}_{k}{ }^{2} / 2\right)+a_{i} q_{k i}^{\prime \prime}-p_{k i}(\partial / \partial t) \alpha_{k}$

$$
\begin{equation*}
+\mathbf{u}_{k i} \cdot \mathbf{M}_{i k}-\nabla \alpha_{k} \cdot \mathbb{E}_{k i} \cdot \mathbf{u}_{k i}+W_{k i}^{T} \tag{26}
\end{equation*}
$$

where $W_{k i}^{T}$ is turbulent dissipation work．Subscript $k i$ indicates the interfacial property．Inserting source terms， momentum equation yields；

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\varepsilon \alpha_{k} \rho_{k} \mathbf{u}_{k}\right)+\nabla \cdot\left(\varepsilon \alpha_{k} \rho_{k} \mathbf{u}_{k} \mathbf{u}_{k}\right)= \\
& -\nabla \cdot\left(\varepsilon \alpha_{k} p_{k} \mathbf{I}\right)+\nabla \cdot\left(\varepsilon \alpha_{k}\left(\widetilde{\widetilde{T}}_{k}+\widetilde{\mathbb{T}}_{k}^{T}\right)\right)-\left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k}\left(p_{k} \mathbf{I}_{k}\right) \cdot d \mathbf{A}^{I} \\
& +\left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k} \widetilde{U}_{k} \cdot d \mathbf{A}^{I}+\varepsilon \alpha_{k} \rho_{k} \mathbf{g}_{k}+\varepsilon \mathbf{M}_{k}^{\gamma}+\varepsilon p_{k i} \nabla \alpha_{k}+\varepsilon \mathbf{M}_{i k}-\nabla \alpha_{k} \cdot \widetilde{\widetilde{T}}_{k i}
\end{aligned}
$$

Various terms in momentum equation can be modeled；

$$
\begin{align*}
& p_{k i} \cong p_{k}, \nabla \cdot\left(\varepsilon \alpha_{k}\left(\widetilde{\mathscr{G}}_{k}+\widetilde{\widetilde{k}}_{k}^{T}\right)\right) \cong \nabla \cdot\left(\varepsilon \alpha_{k} \nabla\left(\rho_{k} v_{k} \mathbf{u}_{k}\right)\right), \mathbf{M}_{k}^{\gamma} \cong \gamma_{k} \mathbf{u}_{k i} \\
& \left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k}\left(p_{k} \mathbf{I}_{k}\right) \cdot d \mathbf{A}^{I} \cong K_{w}\left(\rho_{k} / 2 D_{h}\right)\left|\mathbf{u}_{k}\right| \mathbf{u}_{k} \tag{29}\\
& \left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k} \widetilde{k}_{k} \cdot d \mathbf{A}^{I} \cong-\alpha_{k} C_{k k}\left(\rho_{k} / 2 D_{h}\right)\left|\mathbf{u}_{k}\right| \mathbf{u}_{k} \tag{30}\\
& \mathbf{M}_{i k} \cong-C_{k k^{\prime}}\left(\rho_{k} / 2 D_{k}\right)\left|\mathbf{u}_{k}-\mathbf{u}_{k^{\prime}}\right|\left(\mathbf{u}_{k}-\mathbf{u}_{k^{\prime}}\right), \nabla \alpha_{k} \cdot \widetilde{大 匕 k i}^{\cong} 00 \tag{31}
\end{align*}
$$

Then momentum equation is written；
$(\partial / \partial t)\left(\varepsilon \alpha_{k} \rho_{k} \mathbf{u}_{k}\right)+\nabla \cdot\left(\varepsilon \alpha_{k} \rho_{k} \mathbf{u}_{k} \mathbf{u}_{k}\right)=-\varepsilon \alpha_{k} \nabla \cdot p_{k}+\nabla \cdot\left(\varepsilon \alpha_{k} \nabla\left(\rho_{k} v_{k} \mathbf{u}_{k}\right)\right)$
$-\varepsilon \alpha_{k}\left(\left(K_{w}+C_{k k}\right) \rho_{k} / 2 D_{h}\right)\left|\mathbf{u}_{k}\right| \mathbf{u}_{k}-\varepsilon C_{k k^{\prime}}\left(\rho_{k} / 2 D_{k}\right)\left|\mathbf{u}_{k}-\mathbf{u}_{k}\right|\left(\mathbf{u}_{k}-\mathbf{u}_{k}\right)$
$+\varepsilon \alpha_{k} \rho_{k} \mathbf{g}_{k}+\varepsilon \gamma_{k} \mathbf{u}_{k i}$
Kinetic energy equation is derived from momentum equation multiplying \mathbf{u}_{k} ，and using mass equation；

$$
\begin{align*}
& (\partial / \partial t)\left(\varepsilon \rho_{k} \alpha_{k}\left(\mathbf{u}_{k}^{2} / 2\right)\right)+\nabla \cdot\left(\varepsilon \rho_{k} \alpha_{k}\left(\mathbf{u}_{k}^{2} / 2\right) \mathbf{u}_{k}\right)+\left(\mathbf{u}_{k}^{2} / 2\right) \varepsilon \gamma_{k}= \\
& +\mathbf{u}_{k} \nabla \cdot\left(\varepsilon \alpha_{k}\left(\widetilde{C}_{k}+\widetilde{U}_{k}^{T}\right)\right)-\mathbf{u}_{k}\left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k}\left(p_{k} \mathbf{I}-\widetilde{U}_{k}\right) \cdot d \mathbf{A}^{I} \tag{33}\\
& -\mathbf{u}_{k} \nabla \cdot\left(\varepsilon \alpha_{k} p_{k} \mathbf{I}\right)+\varepsilon \mathbf{u}_{k} \alpha_{k} \rho_{k} \mathbf{g}_{k}+\varepsilon \mathbf{u}_{k}\left(\mathbf{M}_{k}^{\Gamma}+p_{k} \nabla \alpha_{k}+\mathbf{M}_{i k}-\nabla \alpha_{k} \cdot \widetilde{\widetilde{k i n}}\right)
\end{align*}
$$

Inserting source terms into total energy equation and subtracting kinetic energy one gets；
$(\partial / \partial t)\left(\varepsilon \alpha_{k} \rho_{k}\left(e_{k}+\left(\mathbf{u}_{k}{ }^{2} / 2\right)\right)\right)-(\partial / \partial t)\left(\varepsilon \rho_{k} \alpha_{k}\left(\mathbf{u}_{k}{ }^{2} / 2\right)\right)$
$+\nabla \cdot\left(\varepsilon \alpha_{k} \rho_{k}\left(e_{k}+\left(\mathbf{u}_{k}^{2} / 2\right)\right) \mathbf{u}_{k}\right)-\nabla \cdot\left(\varepsilon \rho_{k} \alpha_{k}\left(\mathbf{u}_{k}^{2} / 2\right) \mathbf{u}_{k}\right)=$
$-\nabla \cdot\left(\varepsilon \alpha_{k}\left(\mathbf{q}_{k}+\mathbf{q}_{k}^{T}\right)\right)-\nabla \cdot\left(\varepsilon \alpha_{k}\left(p_{k} \mathbf{I}-\widetilde{\mathbb{T}}_{k}\right) \cdot \mathbf{u}_{k}\right)$
$-\left(1 / V^{T}\right) \int_{A^{1}} \alpha_{k}\left(\mathbf{q}_{k}-\mathbf{T}_{k} \cdot \mathbf{u}_{k}\right) \cdot d \mathbf{A}^{I}+\varepsilon \alpha_{k} \rho_{k} \mathbf{g}_{k} \cdot \mathbf{u}_{k}+\varepsilon \gamma_{k}\left(h_{k i}+\mathbf{u}_{k i} \cdot \mathbf{u}_{k}-\left(\mathbf{u}_{k}^{2} / 2\right)\right)$
$+\varepsilon a_{i} q_{k i}^{\prime \prime}-\varepsilon p_{k i} \frac{\partial \alpha_{k}}{\partial t}+\varepsilon \mathbf{u}_{k i} \cdot \mathbf{M}_{i k}-\varepsilon \nabla \alpha_{k} \cdot \boldsymbol{C} \cdot \mathbf{u}_{k i}+\varepsilon W_{k i}^{T}+\mathbf{u}_{k} \nabla \cdot\left(\varepsilon \alpha_{k} p_{k} \mathbf{I}\right)$
$-\mathbf{u}_{k} \nabla \cdot\left(\varepsilon \alpha_{k}\left(\widetilde{\overleftarrow{k}}_{k}+\widetilde{\mathbb{E}}_{k}^{T}\right)\right)+\left(1 / V^{T}\right) \mathbf{u}_{k} \int_{A^{I}} \alpha_{k}\left(p_{k} \mathbf{I}-\widetilde{\mathbb{E}}_{k}\right) \cdot d \mathbf{A}^{I}-\varepsilon \mathbf{u}_{k} \alpha_{k} \rho_{k} \mathbf{g}_{k}$
$-\varepsilon \mathbf{u}_{k}\left(\mathbf{M}_{k}^{\Gamma}+p_{k i} \nabla \alpha_{k}+\mathbf{M}_{i k}-\nabla \alpha_{k} \cdot \widetilde{\mathbb{E}}_{k i}\right)+\left(\mathbf{u}_{k}^{2} / 2\right) \varepsilon \gamma_{k}$
Simplifying yields the internal energy equation；
$(\partial / \partial t)\left(\varepsilon \alpha_{k} \rho_{k} e_{k}\right)+\nabla \cdot\left(\varepsilon \alpha_{k} \rho_{k} e_{k} \mathbf{u}_{k}\right)=-\varepsilon \alpha_{k} p_{k} \nabla \cdot \mathbf{u}_{k}-\varepsilon \mathbf{u}_{k} p_{k i} \nabla \alpha_{k}$
$-\varepsilon p_{k i}(\partial / \partial t) \alpha_{k}+\varepsilon \gamma_{k} h_{k i}+\varepsilon a_{i} q_{k i}^{\prime \prime}-\overparen{\nabla \cdot\left(\varepsilon \alpha_{k}\left(\mathbf{q}_{k}+\mathbf{q}_{k}^{T}+\widetilde{U}_{k}^{T} \cdot \mathbf{u}_{k}\right)\right)}$

$\xlongequal[-\left(1 / V^{T}\right) \int_{A^{I}} \alpha_{k}\left(\mathbf{q}_{k}+\mathbf{T}_{k} \cdot \mathbf{u}_{k}\right) \cdot d \mathbf{A}^{I}]{ }+\overbrace{\left(1 / V^{T}\right) \mathbf{u}_{k} \int_{A^{I}} \alpha_{k}\left(p_{k} \mathbf{I}-\mathbb{U}_{k}\right) \cdot d \mathbf{A}^{I}}^{I G}$
Modeling various terms in energy equation；
$p_{k}=p_{k i}$
$I A=\nabla \cdot\left(\varepsilon \alpha_{k}\left(\mathbf{q}_{k}+\mathbf{q}_{k}^{T}+\widetilde{\mathbb{T}}_{k}^{T} \cdot \mathbf{u}_{k}\right)\right)=-\nabla \cdot\left(\varepsilon \alpha_{k} \mu_{k}^{e T} \nabla e_{k}\right)$
$I E=-\left(1 / V^{T}\right) \int_{A^{\prime}} \alpha_{k}\left(\mathbf{q}_{k}+\mathbf{T}_{k} \cdot \mathbf{u}_{k}\right) \cdot d \mathbf{A}^{I}=q_{k}^{w} / D_{h}$
IB，IC，ID，IF and IG；neglected
Then，internal energy equation is written；
$(\partial / \partial t)\left(\varepsilon \alpha_{k} \rho_{k} e_{k}\right)+\nabla \cdot\left(\varepsilon \alpha_{k} \rho_{k} e_{k} \mathbf{u}_{k}\right)-\nabla \cdot\left(\varepsilon^{v} \alpha_{k} \mu_{k}^{e T} \nabla e_{k}\right)=$
$-\varepsilon \alpha_{k} p \nabla \cdot\left(\alpha_{k} \mathbf{u}_{k}\right)-\varepsilon p(\partial / \partial t) \alpha_{k}+\varepsilon \gamma_{k} h_{k i}+\varepsilon a_{i} q_{k i}^{\prime \prime}-q_{k}^{w} / D_{h}$
Mass and energy jump conditions are written；
$\sum \gamma_{k}=0$
$\sum\left(\gamma_{k} h_{k i}+a_{i} q_{k i}\right)=0$

4．Conclusions

Governing equations for the multi－fluid flow over a porous body has been successfully derived using the time－volume averaging procedure．Internal energy balance equation is also derived．These equations may be regarded as the basis of the balance equations for a computer program such as SPACE．The porous body approach will give us a systematic way to handle the system geometric data for the multi－dimensional applications via the CAD tools as well as the mesh generators．

References

［1］Ishii M．，T．Hibiki，2006，＂Thermo－fluid dynamics of two－phase flow，＂Springer Science \＆Business Media Inc．，New York．
［2］Whitaker S．，（1985），＂A simple geometrical derivation of the spatial averaging theorem，＂Che． Eng．Education，pp．18－21，pp．50－52．
［3］S．Y．Lee，T．Hibiki，M．Ishii， 2009 NED， ＂Formulation of time and volume averaged two－ fluid model considering structural materials in a control volume＂，Vol－239 pp 127－139

