Source Term Evaluation System Build for Ulchin 5&6 Units

Wan Joo Kim^{a*}, Deuk Yong Song^b, Byung Sup Han^b, Sok Chul Kim^a ^aKorea Institute of Nuclear Safety, 19 Guseong Dong, Yuseong Gu, Daejeon, 305-338 ^bENESYS, 328 Guam Dong, Yuseong Gu, Daejeon, 305-800 Corresponding Author: k391kwj@kins.re.kr

1. Introduction

AtomCARE in KINS is the system for the decision making at the emergency status of nuclear power plants. AtomCARE has the functions of receiving the safety parameters from nuclear power plants, evaluation of source terms, and estimation of dose rate. Recently the source term estimation program was developed for Ulchin 5&6 units. It can calculate the amount of source terms based on the parameters from Ulchin 5&6 units at the emergency status. While exiting estimation programs for other nuclear power plants are using SOR code, new developed program calculates leakage after it decides leakage mechanism based on containment failure mode. (Fig. 1)

Fig. 1 Calculation flow chart of STES for Ulchin 5&6

2. Methods

The source term estimation system of Ulchin 5&6 units is using SOR method like programs for other power plants and leakage logics are complemented by using leakage mechanism based on SAMG of Ulchin 5&6. Ulchin 5&6 units have 10 detailed leakage mechanism according to the 4 containment failure types (Table 1).

Radiological material leakage logics are activated from the parameters from SIDS (Safety Information Display System) of AtomCARE. Table 2 shows 2 leakage mecha-

Cont't failure type	failure/leakage mechanism		
early Cont't failure	isolation failure of cont't		
	direct cont't heating		
	hydrogen explosion		
late Cont't failure	cont't overpressure		
	hydrogen burning		
	cont't penetration failure due to high temperature		
Bottom Melt Through	melting core - concrete interaction		
bypass of cont't	isolation failure ISLOCA		
	isolation failure SGTR		
	S/G tube Creep Rupture		

Table 1 containment failure types

nism logics at the mode of early containment failure. One is isolation failure of containment that radiational leakage is decided when reactor is down and isolation valve is open and at least the one value of radiation monitors is over the criteria.

The radiational leakage of direct containment heating is decided on the conditions: reactor is shutdown, RCS pressure is over the criteria and containment pressure is over the criteria.

Table 3 shows the screens of logics of the parameters, the order and results of calculation. 10 types of accident have each tabs. Input parameter show the failure of containment. Finally, the calculated results are used as input to FADAS which estimates environment dose rate.

3. Conclusion

Source Term Evaluation System (STES) for

type	parameter	variable	set point value	Logic		decision criteria
cont't isola isolation failure radia	Rx. trip	RxTrip	1: down, 0: operation		AND	reactor trip
	isolation valve position	CF6LG1	0: open, 1: close			valve open
	radiation	CVAirG	32.2 Bq/cc	OR		> stat. value
	monitor	CVAirI	0.0082 Bq/cc			> stat. value
		CVAirP	0.000237 Bq/cc			> stat. value
direct	Rx. trip	RxTrip	1:down, 0:operation	AND		rector trip
cont't	RCS press	PZRPr	29.2 kg/cm ² (a)			> stat. value
heating	cont. press	CVPrWr	133.6 cmH ₂ O(G)			> stat. value

Table 2 two leakage mechanism logics

Ulchin 5&6 units evaluates the source terms by using the knowledge of the severe accident types based on SAMG and SOR code of NUREG-1150. This system uses the systematic logics based accident types and it is the different point from existing STES programs. After 2011, AtomCARE will receive more 10 times parameters than now. Then, based on the many parameters, more accurate source term evaluation would be possible.

REFERENCE

[1] United States Nuclear Regulatory Commission, "Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants", NUREG-1150, 1991

[2] United States Atomic Energy Commission, "Siting Criteria", TID-14844 USAEC Report, 1959

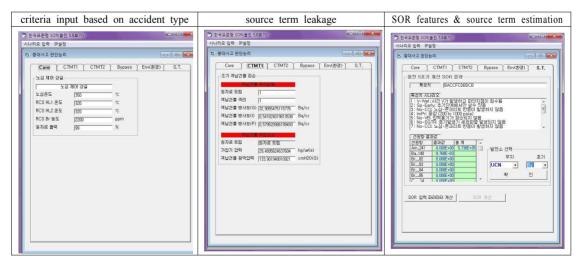


Table 3 the screens of logics of the parameters