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1. Introduction 

 
The project to develop basic design of the Advanced 

Power Reactor 1000 (APR1000) plants has conducted by 

Korea Electric Power Corp. (KEPCO) since the end of 

2009. The APR1000 has been designed to consider the 

operational experience of Optimized Power Reactor 1000 

(OPR1000) plants and emerging safety features. To 

confirm the feasibility of the design concepts of APR1000, 

some selected design basis accidents (DBAs) have been 

analyzed using Korea Non-LOCA Analysis Package 

(KNAP). In this study, the Control Element Assembly 

(CEA) ejection accident was analyzed on the view point 

of the system response to examine the feasibility of the 

APR1000 design concepts. The results were compared 

with those values of the OPR1000 Final Safety Analysis 

Report (FSAR). 

 

2. Plant Modeling 

 

2.1 Reactor Coolant System Modeling 

 

The APR1000 [1] is a typical 1,000MWe pressurized 

water cooled reactor based on the OPR1000. So, in spite 

of the improvement in safety features or systems, the 

APR1000 is treated as the similar plants to the OPR1000 

in the nuclear steam supply system (NSSS) modeling for 

KNAP. The APR1000 NSSS was modeled according to 

the KNAP topical report [2] and modified to implement 

the improved design features. The detailed modeling is as 

the preliminary study [3] and Fig. 1.  

 

2.2 Hot Spot Modeling 

 

The whole core was modeled in two channels, i.e., the 

average core channel and hot channel, according to the 

KNAP Hot Spot Model (HSM) [1, 4].  The average 

channel and hot channel were modeled to represent the 

whole core and the hottest channel caused by the accident, 

respectively [3, 4]. For the average channel, the whole 

core was divided and modeled as the 6 stacked control 

volume and corresponding heat conductors. The hot 

channel was modeled to represent the hot single channel 

with 25 stacked volumes and heat conductors. The detail 

fuel data, such as gap gas composition, fuel pellet plena 

pressures, etc., was developed based on the outputs of fuel 

design code, FATE. 
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Fig. 1 RETRAN nodal diagram for APR1000 

 

3. Rod Ejection Accident Analysis 

 

 To analyze the CEA ejection, the initial conditions and 

assumptions recommended by Regulatory Guide 1.77 of 

US Nuclear Regulatory Commission or corresponding 

guidelines of Korea Institute of Nuclear Safety were 

considered and implemented (Table 1).  

 

Table 1. Initial Conditions and Assumptions 

Parameter Value 

Core power Level, % to Rated Power 102 or 0 

Core Inlet Temp. oF 572 

Core Mass Flow, % to Rated Flow 95 

Pressurizer Pressure (Pressure Case), psia 2,350 

Pressurizer Pressure (Enthalpy Case), psia 2,000 

Moderator Temperature Coefficient,  oF 0.0 

Ejected CEA Worth, 10-2  0.1584 

Total SCRAM Worth, 10-2  -6.0 

Postulated CEA Ejection Time, sec 0.05 

Maximum Radial Peaking factor 2.855 

 

To analyze the system response to the accident, the 

analysis was carried through two cases, i.e., the pressure 

case to confirm the maximum pressure and the enthalpy 

case to confirm the maximum fuel temperature or radially 

averaged enthalpy. The minimum departure from nucleate 

boiling ratio (DNBR) was calculated in the enthalpy case 
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condition. For the power level, the hot full power and hot 

zero power conditions were considered.  

 

The results of this study were compared with those of 

OPR1000 to examine the applicability and to confirm the 

effects of the design improvements. As given at table 2, 

the trends of the transients are similar each other. 

 

Table 2. Sequence of Events  

Event 
OPR1000 APR1000 

Time Value Time Value 

CEA Ejection 0.0  0.0  

Reactor Trip 0.03  0.03  

Max. Power (HFP), % 0.08 164.2 0.08 157.3 

Max. PZR Press, psia 2.44 2500.0 2.23 2500.0 

Max. Fuel Temp., oF 3.44 4,875.0 3.53 4,693 

Max. SG Press, psia 6.35 1,316 9.55 1,326 

 

The power trends of APR1000 show the similar trends 

mentioned in FSAR of reference plants (Fig. 2, 3). The 

difference in power trends was caused by the ejected CEA 

worth and radial peaking factor. By the adoption of 

PLUS7 fuel assembly of APR1000, the milder power 

trends were estimated.   
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 Figure 2. Power (HFP)         Figure 3. Power (HZP) 

 

The maximum temperature of fuel (Fig. 4) and cladding 

surface (Fig. 5) showed the similar trends each other. The 

temperatures of APR1000 were showed lower values, but 

the difference was insignificant values on the view point 

of specified acceptance design limits (SAFDL). 
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Figure 4. Max. Fuel Temp.   Figure 5. Max. Clad Temp. 

 

Because the fuel enthalpy was estimated by the fuel 

temperature, the trends of the fuel enthalpy followed those 

of fuel temperature. In both cases, HFP and HZP, the 

APR1000 showed lower values than the reference plants 

(Fig. 6). The difference, however, were insignificant. By 

the calculation of minimum DNBR (Fig. 7), it was 

induced that the failed fuel fraction of APR100 would not 

exceed that of the reference plants due to the slightly 

higher values of APR1000.  
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Figure 6. Fuel Enthalpy    Figure 7. DNBR-DNBRSAFDL 

 

The pressure responses were mentioned in the 

preliminary study [3]. The design review to mitigate the 

steam generator shell-side pressure has been performed 

and the setpoints to open or close the main steam safety 

valves will be adjusted according to the review results. 

 

4. Conclusion 

 

The feasibility study to confirm the APR1000 design 

concepts was performed using KNAP. The pressure and 

enthalpy cases were analyzed under the HFP and HZP 

conditions. The analysis results were compared with those 

of FSAR of reference plants. Through the study, it was 

concluded that the APR1000 design concepts could be 

acceptable on the view point of CEA ejection accident 

design criteria. 
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