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1. Introduction 

 
In the calculation of power distributions and 

multiplication factors in a nuclear reactor, the Finite 

Difference Method (FDM) and the nodal methods are 

primarily used. These methods are, however, limited to 

particular geometries and lack general application 

involving arbitrary geometries. The Finite Element 

Method (FEM) can be employed for arbitrary geometry 

application and there are numerous FEM codes to solve 

the neutron diffusion equation or the Sn transport 

equation. The diffusion based FEM codes [1,2] have the 

drawback of inferior accuracy while the Sn based ones 

require a considerable computing time. This work here 

is to seek a compromise between these two by 

employing the simplified P3 (SP3) method for arbitrary 

geometry applications. Sufficient accuracy with 

affordable computing time and resources would be 

achieved with this choice of approximate transport 

solution when compared to full FEM based Pn [3] or Sn 

solutions. For now only 2-D solver is considered. 

 

2. Modified SP3 Equation and Galerkin Method 

 

2.1 SP3 Equation and Vacuum B.C. 

 

The original SP3 equation [4] involves a 

nonsymmetric formulation. This can be converted into a 

symmetric form easily which would give the benefit of 

allowing the use of the basic Krylov subspace method 

such as the conjugate gradient method in the solution of 

the resulting linear system. In this regard, the following 

form of the SP3 equations with standard notations are 

used in this research.  
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2.2 Symmetric & Positive Definite Matrix with WRM 

 

Applying the Galerkin method to the above SP3 

equation yields the following block 3x3 matrix 

consisting of 2x2 blocks. 
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Here, Ψi denotes the basis function of the i-th corner. 

O,P,Q,R are the coefficients in the general coupled 

boundary condition equation. The current relation is 

given below: 
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The mesh generation for the FEM calculation can be 

done by various open mesh generation programs. Here 

the GMSH utility is used. Both the linear and quadratic 

basis function options are employed. The resulting 

linear system is solved by the preconditioned Krylov 

subspace method. 

 

3. Verification 

 

For the verification of the newly developed SP3 FEM 

solver, the Takeda fast reactor benchmark [5], the IAEA 

2D benchmark [1] and etc are solved with various 

methods. 

 

3.1 Takeda Benchmark 

 

This fast reactor benchmark problem shown in Figure 

1 is a fast reactor problem in which the transport effect 

is significant. [5] 
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Fig. 1. Takeda 2D Model 3 Domain 

 

This problem was solved with the following meshes 

and basis functions. 
 

Table I: FEM Input for Takeda 2D Model 3, 
Basis Ftn. Nodes Elements Avg. Area 

Linear 6427 12522 2.044 cm2 

Quadratic 6369 3094 8.274 cm2 

 

The multiplication factors obtained with various 

codes and methods are shown below. 

 
Table II: keff Result for Takeda 2D Model 3 

McCARD DeCART SP3 FDM SP3 FEM 

0.90363 
(0) 

0.90363 
(0) 

0.90270 
(-93) 

Linear 
0.90190 

(-173) 

Quadratic 
0.90236 

(-127) 

 

3.2 IAEA 2D Hex Core Benchmark with Rods Inserted 

 

For the following hex core IAEA problem [1], the 

same cases yield the results shown in Tables IV and V 

and Fig.3 

 

 
 

Fig. 2. IAEA 2D Benchmark Domain 

 

Table III: FEM Input for IAEA 2D Benchmark 
Basis Ftn. Nodes Elements Avg. Area 

Linear 4655 8985 0.543 cm2 

Quadratic 4543 2186 2.232 cm2 

 
Table IV: keff Result for  IAEA 2D Benchmark 

McCARD DeCART SP3 FDM SP3 FEM 

1.00622 
(0) 

1.00675 
(+53) 

1.00624 
(+2) 

Linear 
1.00633 

(+11) 

Quadratic 
1.00625 

(+3) 

 

Table V : Power RMS Error for IAEA 2D Benchmark 
 Linear FEM Quadratic FEM 

RMS Error ( % ) 0.252 0.178 

 
 

Fig. 3.Power Result for IAEA 2D Benchmark 

 

3.3 Monju 2D Benchmark 

 

This is a representative rotational problem [1]. 

Results are given in Table VII 

 

 
 
Fig. 4. Monju 2D Benchmark Domain 

 

Table VI. FEM Input  for MONJU 2D Benchmark  
Basis Ftn. Nodes Elements Avg. Area 

Linear 6390 12448 3.634 cm2 

Quadratic 6637 3230 14.005 cm2 

 
Table VII. keff Result  for MONJU 2D Benchmark,  

SP3 FEM 

Linear 1.15831 

Quadratic 1.15848 

 

4. Conclusions 

 

By solving various problems, it was demonstrated 

that the 2-D SP3 FEM solver gives reasonable accuracy 

compared with the other higher order transport methods 

such as Monte Carlo (McCARD) and MOC(DeCART). 

With the good results shown for hexagonal or square 

geometries, it is expected that the accuracy of FEM 

would be retained even for an arbitrary geometry. 

Extension to 3-D applications is under way. 
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