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1. Introduction 

 
The subcell balance methods

1,2,3 
have been developed 

for one- and two-dimensional SN transport calculations. 

In this paper, a linear discontinuous expansion method 

using sub-cell balances (LDEM-SCB) is developed for 

neutral particle SN transport calculations in 3D 

unstructured geometrical problems. At present, this 

method is applied to the tetrahedral meshes. As the 

name means, this method assumes the linear distribution 

of the particle flux in each tetrahedral mesh and uses the 

balance equations for four sub-cells of each tetrahedral 

mesh to obtain the equations for the four sub-cell 

average fluxes which are unknowns. This method was 

implemented in the computer code MUST (Multi-group 

Unstructured geometry SN Transport). The numerical 

tests show that this method gives more robust solution 

than DFEM 
4
(Discontinuous Finite Element Method). 

 

2. Theory and Method 

 

The starting equation is the neutral particle transport 

equation given by 
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where m and g mean the directions of neutral particle 

and the energy group, respectively. The source term q 

represents the scattering source plus the external source. 

LDEM-SCB assumes the following linear distribution of 

flux in each tetrahedron : 
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where zyx ,,  are a local coordinates system whose 

origin is located in the center of the tetrahedron. This 

local coordinates system simplifies the derivation of the 

method. The tetrahedron is divided into its four sub-

cells sharing the center point of the original tetrahedron. 

Next, the sub-cell average fluxes are evaluated by using 

Eq.(2) and the resulting relations are given by 
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where ),,( iii zyx represents the coordinates of the four 

nodes of the tetrahedron.  The four external faces of the 

tetrahedron are also evaluated and they are given by 
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where 
eimg, is the average flux over the face which 

doesn’t contain the node i. These evaluations can be 

done for the remaining six internal faces. For example, 

the average flux over the internal face composed of the 

nodes 1,2,5 (origin of the local coordinates system) is 

given by 
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In fact, these above evaluations are done by using the 

transformation into the barycentric coordinates for 

simplification. The next step is to represent the face 

average fluxes in terms of the sub-cell average fluxes. It 

can be done by using the evaluations performed above. 

The average fluxes over the four external faces are 

given by 
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where  ,, are the three numbers which are different 

from i. The fluxes for the six internal faces are given by 
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The final step is to substitute Eq.(6) and Eq.(7) into 

the four sub-cell balance equations. For example, the 

balance equation for the sub-cell composed of the nodes 

2,3,4 and 5 is given by 
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where 
234n̂ and 

234A are the outward normal vector and 

the area of the surface composed of the nodes 2, 3, and 

4, respectively. The o

m 234,  is unity if the surface 

composed of the nodes 2,3, and 4 is an outgoing face 

and it is zero if the surface is an incoming face. The 

parameter  is introduced to use the weighted average 

of the incoming external face flux from the upstream 

cell and the one from the present cell. It should be noted 

that this term is non-zero only when the external face is 

an incoming face. The substitution of Eq.(6) and (7) into 

Eq.(8) gives 
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where 
234234234,

ˆˆ Ant mm  . 
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The computational procedure is similar to those of 

DFEM.  

 

4. Numerical Test and Discussion 

 

To test the LDEM-SCB, we developed a simple mesh 

generator for cubic boxes. Basically, this generates six 

tetrahedrons of equal volume per one cubic box. We 

considered a cube problem which is defined by 

[0<x<20cm], [0<y<5cm], and [0<z<5cm]. This problem 

is divided into four coarse cubes of equal volume. These 

four cubes are numbered by 1, 2, 3, and 4 such that the 

cube 1 is leftmost and the cube 4 is rightmost along x-

axis. The homogeneous neutron sources of 10.0 and 5.0 

n/cm
3
sec are given in the cubes 1 and 2, respectively.  

For this problem, the five different cases of mesh 

divisions are considered to assess the accuracy of 

LDEM-SCB. The first, second, third, fourth, and fifth 

cases divide the problem into 24, 192, 1536, 12288, and 

98304 tetrahedrons of equal volume, respectively. They 

correspond to 5cm, 2.5cm, 1.25cm, 0.625cm, and 

0.3125cm  side lengths of small cubic box, respectively. 

Figure 1 compares the scalar fluxes for three coarse 

cubes 1, 2, and 3. Figure 2 compares the scalar flux 

maps at the plane y=2.5cm. Figure 1 shows that the 

LDEM-SCB (=1.0, 0.9, 0.8) solution converges faster 

than DFEM for the coarse cube 1 and 2 scalar fluxes 

while DFEM solution converges faster than LDEM-

SCB for the coarse cube 3 flux. It is noted that LDFEM-

SCB (=0.6) gives larger value of scalar flux for the 

coarse cubes 1 and 2 while it gives smaller one for the 

coarse cube 3 in which the flux is small. Although the 

scalar flux for the coarse cube 4 is not given here, the 

negative fluxes for DFEM were found in the first and 

second mesh division cases while all the scalar fluxes 

for LDEM-SCB were positive for all the cases. Our 

experiences for several problems show that LDFEM-

SCB gives robust solutions in terms of positivity than 

DFEM while it overestimates the scalar flux for the low 

flux regions near boundaries. At present, LDFEM-SCB 

uses only face average fluxes but it is possible to use a 

higher-order expansion of flux. In the future, we will 

consider this option in order to improve the accuracy. 

 

 

 

 

 

 

 

 

 

 

(a) Coarse cube 1                                 (b) Coarse cube 2                                      (c) Coarse cube 3  

Fig. 1. Comparison of the region-wise scalar fluxes versus the mesh division 

 
(a)DFEM                                          (b) LDEM-SCB (l=1.0) 

Fig. 2 Comparison of the plane scalar flux maps (y=2.5cm) 
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