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1. Introduction 

 
In the field of nuclear industry, the structure with a 

dynamic contact can be often seen. For example, U 
tubes in the heat exchanger and fuel rods in the reactor 
are representative, and predicting the dynamic behavior 
of the tubes or fuel rods is critical to evaluate whether 
the structural integrity against wear is robust enough. 

For the fuel rod, due to thermal relaxation of the 
elastic supports and creep-down of the fuel rod 
cladding, the gap develops between the fuel rod and the 
supports. Therefore the dynamic impact caused by 
turbulent coolant flow is unavoidable. A degree of 
freedom which is free in the fuel rod becomes 
restrained at a certain time when the gap closes. Usually 
the system is modeled as a beam with extra external 
forces or pseudo forces which simulate a dynamic 
contact condition[1~2]. That is when the fuel rod 
contacts the support, the reaction force is developed and 
the force is regarded as an extra external force. A time 
domain solution can be obtained by direct implicit 
integration of the governic equation using the Newmark 
method, but the predicted solution may not be reliable 
because of the unknown contact force.  

This paper proposes continuous and differentiable 
contact force model that is required to calculate its 
tangent stiffness. 

 
2. Methods and Results 

 
 

2.1 Equation of Motion 
 
Regarding the contacting force acting on the beam as 

an external force, the equation of motion can be written 
as 
[ ]{ } [ ]{ } [ ] { } { } { }Cext

L ffuKuCuM +=++ &&&  (1) 
,where { }u  and [ ]M  denote displacement vector and 

mass matrix, respectively. [ ]LK , [ ]C , and { }extf  are 
linear stiffness matrix, damping matrix, and external 
force vector, respectively. For linear supports, the last 
term in Eq.(1), { }Cf , is the contact force of which a 
component is defined as : 
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,where ig and C
ik denote i-th gap distance and i-th 

support spring constant, respectively. Note that Eq.(2) 
is effective only for the upper supports, the supports 
above the beam. For the lower supports, the contact 

force is active only when the displacement is lower than 
the gap. 
Using the Newmark method, Eq.(1) can be expressed 

as  
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,where [ ]Κ  is dynamic stiffness which is defined as : 
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{ }F  in Eq.(3) is another force vector due to the inertia 
and damping at time t . Usually, considering stability of 
the integration, 1/4 and 1/2 are preferred for β  and γ , 
respectively. 
Based on Eq.(4), the solution can be found, but it 

should be noted that the contact force, { }Cf , is 
unknown at time tt Δ+ . Johansson[3] tried to solve the 
problem using the Taylor expansion of the contact force. 
That is : 
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This expression is meaningful when the contact force is 
differentiable, but the contact force model of Eq.(2) is 
not differentiable at ii gu = . The solid line in Fig. 1 
shows the graphical representation of the force model, 
and it is continuous but the slope is not obviously 
continuous.  

 
2.2 Approximated Contact Force Model 
 
To relieve the drawback, an approximated contact 

force can be defined as 
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 (6) 
,where ε  denotes a reasonably small positive number. 
Actually, Eq.(6) means a continuously varying contact 
force shown in Fig.1. Clearly, the contact force is not 
only continuous, but also the slope is continuous over 
the entire displacement domain. With Eq.(6),  
substituting Eq.(5) to Eq.(3), it leads to  
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,where [ ]T  is tangential stiffness of the contact force, 

{ }
{ }u
f C

∂
∂ . Considering that [ ]Κ  is linear and constant 

while [ ]T  is nonlinear, Eq.(7) can be rewritten as : 
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−
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,where { }P  means the terms in the right hand side of 
Eq.(9). An approximated solution, especially for a 
nonlinear structure, can be found using an iterative 
computation method. 
 

 
Fig. 1 Approximated contact force (dotted line) 

 
2.3 Simulation Example 

 
It is assumed that a harmonic external force with 10 

Hz frequency and 2 N of the magnitude is applied at the 
center of every span. Rayleigh damping which is 
proportional to the stiffness matrix is used, and the 
coefficient of the proportional damping is set to 

4107.2 −×  to damp out all the high natural frequencies 
that are bigger than the 50-th natural frequency. The 
time increment is set to 5102 −×  second. Fig. 2 shows 
the deflected shape for the first few seconds, and the 
maximum amplitude at time 0.012 second exists in the 
first span which is the longest. The load-deflection 
curves for the 5-th mid grid are shown in Fig.3. The 
magnified view of the load-deflection curve, Fig. 3, 
shows that multiple lines exist. It is due to the fact that 
the predicted motion does not exactly coincide with the 
given gap distance. The deviation is negligible, but 
when the modified contact force model is used, though 
the ideal load-deflection path cannot be kept, such an 
error can be minimized.  
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Fig. 2 Deflected shapes 
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Fig. 2 Contact force estimation results 

 
 
 

3. Conclusions 
 

For the structure accompanied by contact 
phenomenon, dynamic contact force model needs to be 
defined. Solutions can be obtained using the Newmark 
method, which requires the contact force a priori. An 
unknown contact force in current time can be estimated 
using Taylor expansion, and therefore a dynamic 
contact model should be differentiable over the 
displacement field. Such a model was suggested in the 
work, and an approximated solution can be found.  
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