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1. Introduction 

 
Resonance fixed source problem is a boundary 

condition problem. Therefore, if the incoming angular 
fluxes are given at the problem boundary, this problem 
can be solved by one ray sweeping in MOC calculation. 
Also Resonance fixed source problem can be efficiently 
solved by decomposing the original problem into 
homogeneous and heterogeneous problems. In this 
paper, these two concepts are introduced on the 
resonance fixed source equation for the MOC codes 
such as DeCART [1] and KARMA [2]. 

 
2. Methods and Results 

 
The resonance fixed source equation can be written 

as: 
 

( ) ppam S=S+S+Ñ×W ljlj ,   (1) 
 
where, Σam is determined by the m-th subgroup level 
cross section and  λΣp by the intermediate potential 
cross section. The equivalent cross section is obtained 
from the solution of scalar flux of Eq. (1), and then it is 
tabularized as a function of subgroup level cross 
sections. The tabularized equivalent cross section is 
used in subgroup method to generate the resonance 
cross section. 

In Eq. (1), the neutron source and cross sections are 
all fixed, and the solution is only dependent on the 
boundary angular fluxes. Therefore, the computational 
performance in solving Eq. (1) is determined by: (1) 
how to calculate the boundary angular fluxes, and (2) 
how to solve Eq. (1) efficiently. In this chapter, a back 
tracing and decomposition concepts are introduced to 
resolve these 2 questions. 
 
2.1 Back Tracing Concept 

 
The boundary angular flux can be determined by 

accumulating the regional source contribution as: 
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where  
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jeT t = transmission probability, 

it = optical length. 

The contribution probability of regional source to the 
boundary angular flux can be calculated by multiplying 
the escape and the transmission probabilities. 

The old DeCART performs a few number of ray 
sweeping iterations for the resonance fixed source 
problem to get a converged scalar flux and boundary 
angular flux as the normal ray sweeping in the 
eigenvalue calculations. In the back tracing concept, the 
boundary angular flux is calculated by using Eq. (2). 
The regional sources whose contribution probabilities 
are less than 10-5 are ignored. 

 
2.2 Decomposition Scheme 

 
In the decomposition concept, the original resonance 

fixed source equation is decomposed into the 
homogeneous and heterogeneous equations. In Eq. (1), 
the source term of λΣp appears in most of all regions but 
Σam in a few resonance regions. If we decompose the 
angular flux into homogeneous and heterogeneous 
solutions as: 
 

10 jjj += ,   (3) 
 
where 0j  is the solution of the following homogeneous 
equation as : 
 

pp S=S+Ñ×W ljlj 00 .  (4) 
 
Then the original equation can be reduced to the 
following heterogeneous equation as: 
 

( ) 011 jjlj ampam S-=S+S+Ñ×W . (5) 
 
In the decomposition scheme, the homogeneous and 

heterogeneous equations are solved instead of the 
original equation. The solution of homogeneous 
equation is known to be ‘1.0’ for the reflective boundary 
condition. Therefore, the homogeneous equation is 
solved only for the non-reflective boundary problem. 
Also, the solution of homogeneous equation is 
independent on the subgroup flux level or the resonance 
category because λΣp is fixed by the group-wise isotope 
cross sections. Therefore, the homogeneous equation is 
solved only once for a resonance energy group if a non-
reflecting boundary condition is assigned.  

Fig. 1 shows the heterogeneous problem comparing 
with the original problem. The heterogeneous equation 
is easier to solve than the original equation because the 
given fixed sources are zero for the non-resonance 
regions. If the zero sources appear in several subsequent 



Transactions of the Korean Nuclear Society Spring  Meeting 
Pyeongchang, Korea, May  27-28, 2010 

 
regions, those zero source regions can be passed in one 
time by just accounting for the total attenuation factor 
for the angular flux.  

 

 
Fig. 1 Heterogeneous Problem 

 
2.3 Results 

 
The computational efficiencies of the above concepts 

are examined for hexagonal single pin, assembly and 
core problems. In this examination, the 190-G neutron 
library which contains 69 resonance groups and 4 sub-
group levels is used. The single pin and assembly 
problems are solved by using 0.02 cm ray spacing, 8 
azimuthal angles per sextant and 3 polar angles. The 
core problem which consists of 54 fuel blocks and 73 
reflector blocks is solved with 1/12 symmetric condition 
and by using 0.05 cm ray spacing, 4 azimuthal angles 
per sextant and 2 polar angles. 

Table 1 shows the computational efficiency 
improvement on resonance fixed source calculations by 
introducing the back tracing and the decomposition 
concepts. In single pin and assembly problems which 
use reflective boundary condition, the back tracing 
concept shows about 1.60 and 1.84 speedups compared 
with the original boundary angular flux iteration scheme.  
In the core problem that uses the vacuum boundary 
condition, the back tracing concept is not incorporated 
in the calculation due to the zero incoming angular flux.  
The decomposition scheme shows about 1.6 speedups 
for all the problems. While the homogeneous equation 
is not solved in the single pin and assembly problems 
due to the known solution of 1.0 for all flat source 
regions, it is solved in the core problem. Even though 
the core problem solves the homogeneous equation, the 
speedup of decomposition scheme is compatible with 
other problems, which is mainly due to the much more 
number of non-resonance regions in the reflector blocks. 
Introduction of both the back tracing and the 

decomposition concepts shows the speedups of about 
2.7 for reflective boundary problems and about 1.6 for 
vacuum boundary problems. 
 
Table 1: Computing Time on Resonance Fixed Source  
Calculation (Intel(R) Core(TM) i7 2.67 GHz) 

Scheme Time (Speedup)* 
Pin Assembly Core 

Boundary 
Iteration 

5.23 
(1.00) 

139.8 
(1.00) 

783 
(1.00) 

Only Back  
Tracing 

3.26 
(1.60) 

75.9 
(1.84) 

783 
(1.00) 

Back Tracing + 
Decomposition 

1.97 
(2.65) 

49.4 
(2.83) 

495 
(1.58) 

*) Total 69 Resonance Groups, 2 Representative 
Categories, 4 Subgroup Levels in 190-G Library 

 
3. Conclusions 

 
In this paper, the back tracing and the decomposition 

concepts were introduced to the resonance fixed source 
equations for the MOC codes such as DeCART and 
KARMA. The back tracing concept was available for 
the pin and the assembly problems using the reflective 
boundary condition and it showed about 1.7 speedups. 
The decomposition scheme was useful for all the 
problems and it showed about 1.6 speedups. 
Introduction of both the back tracing and the 
decomposition concepts showed the speedups of about 
2.7 for reflective boundary problems and about 1.6 for 
vacuum boundary problems. Therefore it was concluded 
that the back tracing and the decomposition concepts 
could be successfully applicable to the MOC codes and 
it could improve the computational efficiency on the 
resonance fixed source calculation maximum about 2.7 
times. 
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