

Development of GPU Based Parallel Computing Module for Solving Pressure Equation in the

CUPID Component Thermo-Fluid Analysis Code

Jin Pyo Lee and Han Gyu Joo
Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-744

jinpyo@snu.ac.kr

1. Introduction

In the thermo-fluid analysis code named CUPID, the
linear system of pressure equations must be solved in
each iteration step. The time for repeatedly solving the
linear system can be quite significant because large
sparse matrices of Rank more than 50,000 are involved
and the diagonal dominance of the system is hardly
hold. Therefore parallelization of the linear system
solver is essential to reduce the computing time.

Meanwhile, Graphics Processing Units (GPU) have
been developed as highly parallel, multi-core
processors for the global demand of high quality 3D
graphics. If a suitable interface is provided,
parallelization using GPU can be available to
engineering computing. NVIDIA provides a Software
Development Kit(SDK) named CUDA(Compute
Unified Device Architecture)[2, 3] to code developers so
that they can manage GPUs for parallelization using the
C language. In this research, we implement parallel
routines for the linear system solver using CUDA, and
examine the performance of the parallelization. In the
next section, we will describe the method of CUDA
parallelization for the CUPID code, and then the
performance of the CUDA parallelization will be
discussed.

2. Method

The CUPID code is written in FORTRAN and the

linear solver is the BiConjugate Gradient STABilized
(BiCGSTAB) method, which is one of the Krylov
subspace methods. The BICGSTAB algorithm requires
4 vector inner products, 2 matrix-vector products and 2
solutions of the preconditioner equation at each
iteration step[3]. Additionally in order to find the norm
of the residual vector, this algorithm needs one more
scalar calculation. The point diagonal preconditioner is
used in CUPID. The point diagonal preconditioner is to
constitute the matrix by taking the diagonal of entries of
the linear system. Although this preconditioner may not
be as efficient as the other preconditioners such as the
Incomplete LU(ILU) conditioner, but it is very simple
and easy to implement particularly in parallel
computation.

The pressure matrix of the CUPID code is sparse and
as no more than 10 entries are given for a single row.
Therefore, the matrix information is stored using two 2-
dimensional arrays and two 1-dimensional arrays in
order to save the computing time and memory. The 2-
dimensional arrays contain the value and the location of
offdiagonal components, and the 1-dimensional arrays

store the diagonal values and the number of neighbors
for each row, respectively. However, the 2-dimensional
arrays are complicated to handle in the GPU
parallelization, so the array structures are converted to 3
equivalent 1-dimensional arrays. These arrays represent
the location of value of the offdiagonal elements, and
the values of diagonal entries.

The parallelization algorithm of the CUPID code
using CUDA contains the following.

[1] Initialization of parameters
[2] GPU memory allocation
[3] Copy information of matrix, preconditioner to GPU
[4] Implement loop of BiCGSTAB
 [4-1] Compute scalar product in parallel
 [4-2] Solve the precondition equation in parallel
 [4-3] Compute matrix-vector product in parallel
[5] Finish loop if the convergence condition is satisfied

3. Performance Examination

The CPU model employed to compare the

performance is Intel Core2 Quad Q9400 2.66GHz. In
contrast, the GPU model employed in this research is
GeForce 9600 GT (containing 8 Multi Processor = 32
Scalar Processor)

3.1. Implementation condition

The GPU’s performance is superior to CPU in single
precision floating point operation. However, GPU
shows poor performance in the double precision
calculation compared to the CPU because GPU’s core,
scalar processor is very lightweight, which implies that
the GPU parallelization in double precision operation
might be useless. In order to examine the parallelization
performance fairly, all the double precision variables in
the CUPID linear system solver is converted to single
precision one.

The CUPID code solves large linear systems and the
matrix dimension can be larger than 10,000. Therefore,
the number of block in the CUDA parallelization
should be carefully chosen. If the number of blocks is
insufficient, the CUDA kernel might be broken down
due to the overflow of GPU’s cache memories. Also, in
order to enhance the performance, the number of thread
should be chosen as the dimension greater than the
number of blocks. In this case, each thread made such
that it computes one row of matrix.

Transactions of the Korean Nuclear Society Spring Meeting
Pyeongchang, Korea, May 27-28, 2010

3.2. Results

The test was performed in sequence given in the
following tables. The size of matrix used in this test is
11220 by 11220 and 125000 by 125000. And then
these matrices are involved in 2 phase rectangular
parallelepiped problem[1, 4].
※ In case of Table 1~3, iteration contains only one kernel and
number of iterations fixed to 2000.

Table 1. Performance comparison for Parallelized Matrix-
Vector Product Kernel

of Block 32 64 128 256 512
GPU [sec]
Dim 11220 0.687 0.683 0.681 0.668 0.671
CPU [sec]
Dim 11220 1.29
GPU[sec]

Dim 125000 - 6.00 6.08
CPU[sec]

Dim 125000 11.4

※ It is impossible to implement in this algorithm under 25
blocks, 210 blocks due to overflow of shared memory in case
of dimension 11220 and dimension 1250000 respectively.

Table 2. Performance comparison for Parallelized
Solution of Preconditioner Equation

of Block 32 64 128 256 512
GPU [sec]
Dim 11220 0.043 0.054 0.038 0.045 0.039
CPU [sec]
Dim 11220 0.177
GPU [sec]

Dim 125000 - 1.86 1.93
CPU [sec]

Dim 125000 2.24

※ This kernel consist of the same algorithm with above.

Table 3. Performance comparison for Parallelized Scalar
Product

of Block 4 8 16 32 64
GPU [sec]
Dim 11220 0.103 0.059 0.053 0.049 0.050
CPU [sec]
Dim 11220 0.116
GPU [sec]

Dim 125000 1.97 1.65 1.03 0.965 0.953
CPU [sec]

Dim 125000 1.39

※ This kernel consist of the tree-like summation algorithm
different from above. In the case, the shared memory

Table 4. CUPID code computing time with CPU and GPU

matrix
dimension

of
iterations

CPU
Intel

Core2
Quad
[sec]

GeForce
9600 GT

[sec]

speed
up

(small)
11220

by
11220

25 0.15 0.04 3.75
50 0.27 0.07 3.85
75 0.35 0.11 3.18

100 0.43 0.15 2.87

(large)
125000

by
125000

25 1.07 0.41 2.61
50 1.95 0.81 2.41
75 2.92 1.22 2.39

100 3.88 1.64 2.37
※ CPU: Intel Core2 Quad Q9400 2.66GHz

※ Number of blocks fixed to 128

※CUPID code used in this test contains above three kernels

4. Discussion

Table 1~3 shows that the respective kernel has its
own specific number of blocks to give the best
performance. Considering these results, 128 blocks
were used for the CUPID run shown in Table 4. The
results of Table 4 show that the performance of GPU is
better than CPU by up to about 4. However, the
improvement of performance decreases with the
number of iterations and the size of matrix. This
tendency might result from transmission data of
FORTRAN to C and C to CUDA. Therefore, we will
achieve better higher performance if the CUPID code is
converted into C language program. Also, inappropriate
data structure needs to be restructured.

5. Conclusion

In this research, the linear system module of the
CUPID code was successfully parallelized by the
CUDA package. Especially the increase of performance
is up to about 4. Also, through this research it was
found that iterative method is well parallelized using
CUDA. Although the performance of GPU is not
linearly dependent on the number of GPU cores, It is
possible to obtain relatively high performance with
much less cost and smaller space by using GPU.
However, other preconditioner is not yet parallelized
because its algorithm is so complicated. This point can
be overcome by sophisticated algorithm. Also, GPU
parallelization shows poor performance in double
precision. This defect can be solved by improvement of
GPU.

REFERENCES
[1] J. J. Jeong et al, A semi-implicit numerical scheme for
transient two-phase flows on unstructured grids, Nucl. Eng.
Deg. 238, 3403 (2008).
[2] “NVIDIA CUDATM Programming Guide”, ver. 3.0 , pp.1-
3, 2009
[3] Jens Breitbart, Research Group Programming Languages/
Methodologies Dept. of Computer science and Electrical
Engineering, Universitat Kassel, pp.21-25, August 7, 2008
[4] Joo Han Gyu, Jung Yeon Sang, Lee Min Jae, CUPID
압력방정식 선형계 신속해석모듈 개발, Seoul National
University, 2009

Transactions of the Korean Nuclear Society Spring Meeting
Pyeongchang, Korea, May 27-28, 2010

	분과별 논제 및 발표자

	PNO0: - 111 -
	PNO1: - 112 -

