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1. Introduction 

 
As a part of the Ministry of Knowledge Economy 

(MKE) project, “Development of safety analysis codes 

for nuclear power plants”, KOPEC has been developing 

the hydraulic solver code package applicable to the 

safety analyses of nuclear power plants (NPP’s). 

The matrices of the hydraulic solver are usually 

sparse and may be asymmetric. 

In the earlier stage of this project, typical direct 

matrix solver packages MA48 [1, 2] and MA28 [3] had 

been tested as matrix solver for the hydraulic solver 

code, SPACE. The selection was based on the 

reasonably reliable performance experience from their 

former version MA18 [4] in RELAP computer code. 

In the later stage of this project, the iterative 

methodologies have been being tested in the SPACE 

code. Among a few candidate iterative solution 

methodologies tested so far, the biconjugate gradient 

stabilization methodology (BICGSTAB) has shown the 

best performance in the applicability test and in the 

application to the SPACE code.  Regardless of all the 

merits of using the direct solver packages, there are 

some other aspects of tackling the iterative solution 

methodologies. The algorithm is much simpler and 

easier to handle. The potential problems related to the 

robustness of the iterative solution methodologies have 

been resolved by applying pre-conditioning methods 

adjusted and modified as appropriate to the application 

in the SPACE code. 

The application strategy of conjugate gradient 

method was introduced in detail by Schewchuk, Golub 

and Saad in the middle of 1990’s [5, 6 & 7]. 

The application of his methodology to nuclear 

engineering in Korea started about the same time and is 

still going on and there are quite a few examples of 

application to neutronics [8, 9 & 10]. Besides, Yang 

introduced a conjugate gradient method programmed in 

C++ language [11].  

The purpose of this study is to assess the performance 

and behavior of the iterative solution methodology 

compared to those of the direct solution methodology 

still being preferred due to its robustness and reliability. 

The main object of this work is not to investigate the 

whole transient behavior of the models at hand but to 

focus on the behavior of numerical solutions part of the 

sparse asymmetric matrix equations in the transient of 

hydraulic system. 

It is outside of the scope of this work to improve the 

diagonal dominance or to pre-condition the matrix in the 

process of differencing and linearizing the governing 

equation, even though it is better to do it that way before 

applying the solver if there is any efficient way available. 

 

2. Methods and Results 

 

In this section, the iterative solution methodology and 

the application strategies are described. 

 

2.1 Handling the Asymmetry of Matrices 

 

In solving a set of matrix equation Ax = b by 

applying the iterative solution method, as the residual 

correction process continues, the norm of error vector 

may decrease if the matrix is well-conditioned. Since 

the error vector cannot be obtained, the residual vector 

can be used instead to check the convergence. The 

residual vector at k-th iteration is described as: 

 

  r
(k)
 = b - A x

(k)
  (1) 

 

where 

A = the original matrix 

x
(k)

 = the solution vector obtained at k-th 

iteration 

b = the right-hand-side (RHS) / source vector 

r
(k)
 = the solution vector obtained at k-th 

iteration. 

 

In the process of conjugate gradient method with a 

symmetric matrix system, the residual vector, one 

direction vector, one scaling factor and one adjustment 

factor were enough for residual correction. However, in 

the BICGSTAB with an asymmetric matrix system, 

other auxiliary vectors and adjustment factors are also 

involved to handle the asymmetry, which makes the 

process more complicated. 

With all the mathematical manipulations, Yousef 

Saad summarized the BICGSTAB algorithm as follows 

[7]:  

 

1.   Compute r0 := b - Ax0 ; r
*
0 arbitrary. 

2.   p0 := r0 . 

3.   For j = 0, 1, 2, …, until convergence Do: 

4.    αj := (rj, r
*
0) / (Apj, r

*
0) 

5.    sj := rj - αj Apj 

6.    ωj := (Asj, sj) / (Asj, Asj) 

7.    xj+1 := xj + αj pj + ωj sj 

8.    rj+1:= sj - ωj Asj 

9.    βj := [(rj+1, r
*
0) / (rj, r

*
0)]x[αj / ωj] 

10.    pj+1 := rj+1 + βj (pj - ωj Apj) 

        11.  EndDo. 
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2.2 Handling the Sparsity of Matrices 

 

Only the non-zero elements are kept to handle the 

sparsity, applying the quasi-band matrix memory index 

system, compared to the coordinate memory index 

system used in MA direct solver packages. 

The dynamic memory allocation method is also used 

to handle the variable dimension involved with this 

sparse matrix memory index system. 

 

2.3 Pre-conditioning Strategy 

 

The robustness of the convergence and the behavior 

in terms of residual reduction can be improved by pre-

conditioning. 

For a given convergence criteria, the number of 

iterative process can be reduced by improving the 

conditions of the matrix system by applying pre-

conditioning methods. The simple Jacobi pre-

conditioning or the ILU pre-conditioning can be applied. 

The later one reduces the number of iterations 

dramatically, maybe down to less than few times, in 

most typical cases and yet it is more complicated and 

involves extra time-consuming process, such that in 

some cases it takes more overall calculation time than 

the case without the pre-conditioning, which must be 

overcome by applying appropriate strategy. 

 

2.4 Time-Saving Strategy of Applying the Iterative 

Solution Method 

 

As the time-saving process was the most important 

strategy in the direct solver packages, somewhat 

different type of time-saving process is equally 

important in the iterative solution process also. 

The dynamic memory allocation and the memory 

index mapping are set outside of transient iterations. 

Defining the coefficient matrix and pre-conditioning 

is performed at the beginning of each transient time step, 

but outside of the iterative processes for the solution of 

matrix equation. 

 

2.5 Results  

 

The method has been tested with typical 10x10, 

32x32 asymmetric matrix equations and also with the 45 

cells Marviken test case, in which fluid is discharged 

through a nozzle at the bottom of a full-size vertical 

reactor. The time frame is 60 seconds. When this 

solution methodology was tested in steady-state 

stabilization process, the iterations required to satisfy 

the convergence criteria of 1x10
-14

, which is the 

reasonably achievable calculation accuracy with the 

double precision version MA package, was a little more 

than 40 times during the calculation of earlier settling-

down process. This number is dramatically reduced 

down to 10~15 times, mostly 5 or 10 in the subsequent 

transient analyses without pre-conditioning. The result 

shows a good acceptable behavior up to this point. 

Since the code is to be used with one short time 

steady-state initialization and many subsequent longer 

time-frame restart transient case analyses for one system 

model in general, this change in convergence behavior 

can be judged to be optimistic.  

 

3. Conclusions 

 

The test results have shown that the iterative solution 

methodology selected and applied to the hydraulic 

solver package being developed works well with typical 

test cases. 
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