
Transactions of the Korean Nuclear Society Autumn Meeting

Gyeongju, Korea, October 29-30, 2009

The Application Strategy of Iterative Solution Methodology

to Matrix Equations in Hydraulic Solver Package, SPACE
Young W. Na

 ∗
, Chan.E. Park, Sang Y. Lee

KOPEC, Safety Analyses Dept, 150 Deokjin-dong, Yuseong-gu, Daejeon 305-353, Korea
*
Corresponding author: ywna@kopec.co.kr

1. Introduction

As a part of the Ministry of Knowledge Economy

(MKE) project, “Development of safety analysis codes

for nuclear power plants”, KOPEC has been developing

the hydraulic solver code package applicable to the

safety analyses of nuclear power plants (NPP’s).

The matrices of the hydraulic solver are usually

sparse and may be asymmetric.

In the earlier stage of this project, typical direct

matrix solver packages MA48 [1, 2] and MA28 [3] had

been tested as matrix solver for the hydraulic solver

code, SPACE. The selection was based on the

reasonably reliable performance experience from their

former version MA18 [4] in RELAP computer code.

In the later stage of this project, the iterative

methodologies have been being tested in the SPACE

code. Among a few candidate iterative solution

methodologies tested so far, the biconjugate gradient

stabilization methodology (BICGSTAB) has shown the

best performance in the applicability test and in the

application to the SPACE code. Regardless of all the

merits of using the direct solver packages, there are

some other aspects of tackling the iterative solution

methodologies. The algorithm is much simpler and

easier to handle. The potential problems related to the

robustness of the iterative solution methodologies have

been resolved by applying pre-conditioning methods

adjusted and modified as appropriate to the application

in the SPACE code.

The application strategy of conjugate gradient

method was introduced in detail by Schewchuk, Golub

and Saad in the middle of 1990’s [5, 6 & 7].

The application of his methodology to nuclear

engineering in Korea started about the same time and is

still going on and there are quite a few examples of

application to neutronics [8, 9 & 10]. Besides, Yang

introduced a conjugate gradient method programmed in

C++ language [11].

The purpose of this study is to assess the performance

and behavior of the iterative solution methodology

compared to those of the direct solution methodology

still being preferred due to its robustness and reliability.

The main object of this work is not to investigate the

whole transient behavior of the models at hand but to

focus on the behavior of numerical solutions part of the

sparse asymmetric matrix equations in the transient of

hydraulic system.

It is outside of the scope of this work to improve the

diagonal dominance or to pre-condition the matrix in the

process of differencing and linearizing the governing

equation, even though it is better to do it that way before

applying the solver if there is any efficient way available.

2. Methods and Results

In this section, the iterative solution methodology and

the application strategies are described.

2.1 Handling the Asymmetry of Matrices

In solving a set of matrix equation Ax = b by

applying the iterative solution method, as the residual

correction process continues, the norm of error vector

may decrease if the matrix is well-conditioned. Since

the error vector cannot be obtained, the residual vector

can be used instead to check the convergence. The

residual vector at k-th iteration is described as:

 r
(k)
 = b - A x

(k)
 (1)

where

A = the original matrix

x
(k)

 = the solution vector obtained at k-th

iteration

b = the right-hand-side (RHS) / source vector

r
(k)
 = the solution vector obtained at k-th

iteration.

In the process of conjugate gradient method with a

symmetric matrix system, the residual vector, one

direction vector, one scaling factor and one adjustment

factor were enough for residual correction. However, in

the BICGSTAB with an asymmetric matrix system,

other auxiliary vectors and adjustment factors are also

involved to handle the asymmetry, which makes the

process more complicated.

With all the mathematical manipulations, Yousef

Saad summarized the BICGSTAB algorithm as follows

[7]:

1. Compute r0 := b - Ax0 ; r
*
0 arbitrary.

2. p0 := r0 .

3. For j = 0, 1, 2, …, until convergence Do:

4. αj := (rj, r
*
0) / (Apj, r

*
0)

5. sj := rj - αj Apj

6. ωj := (Asj, sj) / (Asj, Asj)

7. xj+1 := xj + αj pj + ωj sj

8. rj+1:= sj - ωj Asj

9. βj := [(rj+1, r
*
0) / (rj, r

*
0)]x[αj / ωj]

10. pj+1 := rj+1 + βj (pj - ωj Apj)

 11. EndDo.

Transactions of the Korean Nuclear Society Autumn Meeting

Gyeongju, Korea, October 29-30, 2009

2.2 Handling the Sparsity of Matrices

Only the non-zero elements are kept to handle the

sparsity, applying the quasi-band matrix memory index

system, compared to the coordinate memory index

system used in MA direct solver packages.

The dynamic memory allocation method is also used

to handle the variable dimension involved with this

sparse matrix memory index system.

2.3 Pre-conditioning Strategy

The robustness of the convergence and the behavior

in terms of residual reduction can be improved by pre-

conditioning.

For a given convergence criteria, the number of

iterative process can be reduced by improving the

conditions of the matrix system by applying pre-

conditioning methods. The simple Jacobi pre-

conditioning or the ILU pre-conditioning can be applied.

The later one reduces the number of iterations

dramatically, maybe down to less than few times, in

most typical cases and yet it is more complicated and

involves extra time-consuming process, such that in

some cases it takes more overall calculation time than

the case without the pre-conditioning, which must be

overcome by applying appropriate strategy.

2.4 Time-Saving Strategy of Applying the Iterative

Solution Method

As the time-saving process was the most important

strategy in the direct solver packages, somewhat

different type of time-saving process is equally

important in the iterative solution process also.

The dynamic memory allocation and the memory

index mapping are set outside of transient iterations.

Defining the coefficient matrix and pre-conditioning

is performed at the beginning of each transient time step,

but outside of the iterative processes for the solution of

matrix equation.

2.5 Results

The method has been tested with typical 10x10,

32x32 asymmetric matrix equations and also with the 45

cells Marviken test case, in which fluid is discharged

through a nozzle at the bottom of a full-size vertical

reactor. The time frame is 60 seconds. When this

solution methodology was tested in steady-state

stabilization process, the iterations required to satisfy

the convergence criteria of 1x10
-14

, which is the

reasonably achievable calculation accuracy with the

double precision version MA package, was a little more

than 40 times during the calculation of earlier settling-

down process. This number is dramatically reduced

down to 10~15 times, mostly 5 or 10 in the subsequent

transient analyses without pre-conditioning. The result

shows a good acceptable behavior up to this point.

Since the code is to be used with one short time

steady-state initialization and many subsequent longer

time-frame restart transient case analyses for one system

model in general, this change in convergence behavior

can be judged to be optimistic.

3. Conclusions

The test results have shown that the iterative solution

methodology selected and applied to the hydraulic

solver package being developed works well with typical

test cases.

Acknowledgment

This study was performed under the project,

“Development of safety analysis codes for nuclear

power plants” sponsored by the Ministry of Knowledge

Economy.

REFERENCES

[1] Aspentech, HSL 2007 MA48 Version 2.1.0 Package

Specification, AERE, Harwell, Oxfordshire, February 27,

2008.

[2] I.S. Duff & J.K. Reid, MA48, a Fortran Code for Direct

Solution of Sparse Unsymmetric Linear Systems of Equations,

RAL-93-072, Central Computing Department, Rutherford

Appleton Laboratory, Oxon OX11 0QX, October 1993.

[3] I.S. Duff, MA28 - A set of Fortran Subroutines for Sparse

Unsymmetric Linear Equations, AERE - R 8730, Computer

Science and Systems Division, AERE Harwell, Oxfordshire,

November 1980.

[4] A.R. Curtis & J.K. Reid, MA18 - Fortran Subroutines for

the Solution of Sparse Sets of Linear Equations, AERE - R

6844, Theoretical Physics Division, AERE Harwell, Berkshire

1971.

[5] Schewchuk J. R., An Introduction to the Conjugate

Gradient Method Without the Agonizing Pain, Edition 1&1/4,

School of Computer Science, Carnegie Mellon University, PA

15213, 1994.

[6] Golub G. H. , et. Al., Matrix Computations, 3rd Ed., The

Johns Hopkins University Press, Baltimore & London, 1996.

[7] Saad Y., Iterative Methods for Sparse Linear Systems,

PWS Publishing Co., Boston MA, U.S.A. , 1996.

[8] H. G. Joo and T. J. Downar, “Incomplete Domain

Decomposition Preconditioning for Coarse Mesh Neutron

Diffusion Problems,” Proc. Int. Conf. Mathematics and

Computational Reactor Physics and Environmental Analysis,

Vol. 2, p. 1584, April 30–May 4, 1995.

[9] Ku Young Chung and Chang Hyo Kim, "Temporal

Adaptive Three-Grid Correction Method for Transient

Nonlinear Nodal Calculations," Nuclear Science and

Engineering, 151, 212-223, 2005.

[10] T.Y.Han, H.G.Joo, H.C.Lee, C.H.Kim, “Multi-group

unified nodal method with two-group coarse-mesh finite

difference formulation”, Annals of Nuclear Energy, Vol. 35,

pp. 1975-1985, 2008.

[11] Yang D., C++ and Object-Oriented Numeric Computing

for Scientists and Engineers, Springer-Verlag New York, Inc.,

2001.

	분과별 논제 및 발표자

	PNO0: - 415 -
	PNO1: - 416 -

