
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2009

Initial Assessment of Parallelization of Monte Carlo Calculation using Graphics Processing
Units

Sung-hoon Choi and Han Gyu Joo

Seoul National University, San 56-1,Ssillim-dong, Seoul, 151-744
hooni86@snu.ac.kr

1. Introduction

Monte Carlo (MC) simulation is an effective tool for
calculating neutron transports in complex geometry.
However, because Monte Carlo simulates each neutron
behavior one by one, it takes a very long computing
time if enough neutrons are used for high precision of
calculation. Accordingly, methods that reduce the
computing time are required. In a Monte Carlo code,
parallel calculation is well-suited since it simulates the
behavior of each neutron independently and thus
parallel computation is natural. The parallelization of
the Monte Carlo codes, however, was done using multi
CPUs.

By the global demand for high quality 3D graphics,
the Graphics Processing Unit (GPU) has developed into
a highly parallel, multi-core processor. This parallel
processing capability of GPUs can be available to
engineering computing once a suitable interface is
provided. Recently, NVIDIA introduced CUDATM, a
general purpose parallel computing architecture.[1]
CUDA is a software environment that allows
developers to manage GPU using C/C++ or other
languages. In this work, a GPU-based Monte Carlo is
developed and the initial assessment of it parallel
performance is investigated.

2. Methods

A simplified mutigroup 2-D MC code was written
first for this development. The CPU based code
performs the I/O processing as well as the transport
simulation. Only the transport simulation part is made
to be executed on GPU.

In the parallel implementation, errors in tally could
occur if several threads access and changes a variable
stored in the same memory simultaneously. To avoid
this, a variable storing a tally should be given as an
array that has the number of threads elements. By the
same reason, the variables storing new neutrons
generated by fission are also made thread dependent.
After all the threads complete the transport simulation,
the new fission neutron data stored separately are
unified in one queue and distributed to the threads at the
next cycle.

The algorithms that check and manage how many
threads are active in the current cycle are added in the
parallel implementation. In the loop in which neutron
data are distributed to each thread, the loop terminates i)
if the neutrons are launched to all the threads, or ii) if
the total number of simulated neutrons in the current
cycle equals to the number of neutrons generated by

fission in the previous cycle. For example, if there are
1500 threads and 10000 new fission neutrons, all 1500
threads are active during 1st - 6th simulations, but
because there are only 1000 neutrons left, 1000 threads
are active and rest 500 are inactive at 7th simulation.

The random number generator (RNG) is also a
problem in parallelization. If the same RNG are used
with the same seed, every thread will perform exactly
the same simulation. Thus, the parallel RNG are
required for parallelization. A parallel RNG available
from the CUDAMCML, Monte Carlo code for photon
transport developed Lund University is used here.[3]

3. Performance Assessment

The CPU model used to compare performance is

Intel Core2 Quad Q9400 2.66GHz while the follow
three GPUs models are used: GeForce 8400M GS,
GeForce 9600 GT, and Tesla C1060. They have 2, 8
and 30 multi-processors (MP), respectively and each
MP contains 8 processors.

2.1. Simulation condition

The test problem used for this test is the C5G7MOX

core problem. The various numbers of source neutrons
per cycle ranging from 250 to 1000000 are tried and the
total number of cycles is 100 with the number of
inactive cycles of 20.

In order to maximize the GPU computing potential,
the number of threads should be selected properly. With
more threads, more parallel simulations are done on
GPUs. However, if there are too many threads, the
number of registers per thread can be insufficient and
then GPU processing speed gets lower.

In this work, the numbers of threads are selected with
the execution data for the case of 10000 neutrons per
cycle. The optimum numbers of threads are selected
such that the simulation time becomes the minimum.
The resulting numbers of threads are 3200, 8000, and
12000, respectively, for GeForce 8400M GS, GeForce
9600 GT, and Tesla C1060. In fact, if the number of
threads is selected by calculating number of needed
resisters, the performance of GPU would improve.

2.2. Comparison accuracies of CPU and GPU

The k-eff's obtained with various numbers of source
neutrons on different platforms are show in Figure 1
with the error bar designating 1σ standard derivation. It
is shown in this figure that all k-eff's of CPU and GPUs
agree within the 1σ range. Therefore, the results of CPU

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2009

 If the number of neutrons per cycle is low, not all
threads are operating. Instead, the time of copying data
between GPU and CPU takes a lot of overhead and thus
GPU is slower than CPU. But if the number of neutrons
per cycle is high enough, all threads operate and the
simulation is accelerated effectively by parallel
computing.

and GPUs can be regarded the same in the statistical
point of view.

Fig1.The results of calculating k-eff on CPU and GPU

1.0005

1.0010

1.0015

1.0020

1.0025

1.0030

1.0035

1.0040

10,000 50,000 100,000 1,000,000

k-
ef

f

Number of Source Neutrons per cycle

CPU GF 8400M GS

GF 9600 GT Tesla C1060

2.3. Comparison performances of CPU and GPU

Table 1 lists the computing time for the various cases
and Figure 2 show the speedup.

Table 1. Monte Carlo simulation time with CPU and GPU
No. of

Neutron
per cycle

CPU
[sec]

GeForce
8400M

GS [sec]

GeForce
9600 GT

[sec]

Tesla
C1060
[sec]

250 1.09 1.80 1.84 1.09
500 1.79 2.22 1.86 1.16
750 2.54 2.47 1.89 1.19

1,000 3.20 2.75 1.92 1.22
3,000 9.32 5.35 2.42 1.45
5,000 14.40 8.78 2.90 1.63
7,000 20.15 11.77 3.37 1.86

10,000 29.93 15.86 4.59 2.14
50,000 147.97 73.39 16.93 8.48

100,000 298.18 145.08 32.17 15.92
1,000,000 2839.35 1406.23 306.13 144.02

It is shown in this table that GPUs are not any faster

than CPU if the number of neutrons per cycle is too few.
But for the practical cases in which more neutrons are
used for low variance in the local pin power parameters,
there are substantial speedups by using GPUs. The
speedup for GeForce 8400M GS, GeForce 9600 GT,
and Tesla C1060 are about 2, 10 and 20, respectively.

Fig 2. Comparison of GPU speedups

4. Conclusion

A simple multigroup, 2-D GPU-based Monte Carlo

was developed to examine its parallel execution
performance. With a large number of neutrons per cycle,
the simulation speed could be about 20 times faster than
the CPU-based one on the Tesla C1060 machine.
Although a GPU core can’t give the performance
similar to a CPU core, the fact that there are
considerable many cores (240 cores in the case of
Tesla C1060) provides much room for accelerating
through improving the parallel algorithm. This research
suggests that with much less price and smaller space,
GPUs can deliver better performance than CPU clusters
in parallel Monte Carlo calculations.

REFERENCES

[1] “NVIDIA CUDATM Programming Guide”, Ver. 2.2, pp. 1-
3, 2009.
[2] P. Martinsen, J. Blaschke, R. Kunnemeyer, and R. Jordan,
“Accelerating Monte Carlo simulations with an NVIDIA
graphics processor”, ELSEVIER, pp. 1-7, 2009.
[3] E. Alerstam, T. Svensson, and S. Andersson-Engels,
“CUDAMCML User manual and implementation notes”,
Department of Physics Lund University, pp. 12, 2009.

0

5

10

15

20

0 10000 20000 30000 40000 50000

G
P
U

 s
p
ee

d
 /

 C
P
U

 s
p
ee

d

Number of Source Neutrons per cycle

Tesla C1060

GF 9600 GT

GF 8400M GS

	분과별 논제 및 발표자

	PNO0: - 137 -
	PNO1: - 138 -

