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1. Introduction 
 

 There are many finite element models used for 
assessing the structural integrity of cylinders or shells 
with fluid-filled annulus. In the past the fluid region 
was not modeled explicitly and their mass was added to 
the structural mass as a form of an added mass for 
simplicity. In this case the fluid-structure interaction 
effect, so called annulus effect, is not considered in the 
analysis, generating the unrealistic or unconservative 
results in some cases. Therefore it is necessary to make 
a 3-dimensional model including fluid region and to 
couple two nodes which are assigned to the fluid and 
the structure. Fortunately commercial programs such as 
ANSYS [1] can model couplings between the fluid and 
the structure easily and can consider the annulus effect 
for various types of analyses very efficiently.  
 Therefore in this study, theoretical background and 
several finite element models are developed for coaxial 
cylindrical shells with fluid-filled annulus considering 
fluid-structure interaction. The effect of the inclusion of 
the fluid-filled annulus on the natural frequencies is 
investigated by comparing frequencies between various 
finite element models. Using the modal characteristics, 
typical dynamic analyses such as responses spectrum, 
power spectral density (PSD) and unit load excitation 
are performed and their response characteristics are 
addressed with respect to the various representations of 
the fluid-structure interaction. 

 
2. Analysis 

 
 The equations of motion can be represented for the 
displacements x on the structure as: 
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where the displacements xb are forced to vary in a 
defined manner with prescribed functions of time and 
pb represents the column matrix of unknown forces 
causing the displacements xb.  
 If the hydrodynamic couplings are considered in the 
analysis, the mass matrix is 
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where Ms and Mh are the structural and hydrodynamic 
mass matrices, respectively. Considering two mass 
points with hydrodynamic couplings, Eq. (1) becomes 
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where Fa and Fb are the spring and damping forces at 
nodes a and b defined as: 
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 In a solution which is based on a direct integration 
of the equations of motion, the spring and damping 
forces are evaluated at each instant of time and then the 
accelerations are solved. Integration of the accelerations 
gives the velocities and displacements needed to 
reevaluate the accelerations for the next time step [2]. 
 The hydrodynamic mass matrix can be calculated 
from the fluid velocity potential for the two long 
concentric cylinders separated by a gap filled with ideal 
and compressible fluid. The governing continuity 
equation is written for any instant [3] as: 
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where φ is the velocity potential, r and θ are the radial 
and angular coordinates. Applying the boundary 
conditions for the radial component of fluid velocity at 
r = a and r = b yields the following solution for φ : 
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 Therefore fluid forces on the cylinders are obtained 
by integrating fluid pressure in the annulus along the 
circumference, resulting in matrix form as: 
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where m1(=ρπa2) is the mass of fluid displaced by the 
inner cylinder, m2 (=ρπb2) is the mass of fluid contained 
by the outer cylinder and fc is the magnification factor 
for hydrodynamic mass depending on the size of the 
annulus defined as: 
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 If the gap is infinite, the magnification factor fc 
becomes zero and only off-diagonal term exists with the 
added mass of the inner cylinder as shown in Figure 1. 
If the gap is so small, the factor becomes infinite and 
the fluid force tends to cushion one cylinder from the 
other [4]. 
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Fig. 1. Magnification factor of hydrodynamic mass 

 
3. Results and Discussion 

 
 The maximum deflections and equivalent stresses 
are summarized from the response spectrum analysis. 
As indicated in the table, the responses decrease 
significantly when the fluid is not included in the model. 
If the fluid is considered as added mass only, or the 
fluid coupling effect is not considered in the model, the 
responses are generally lowered. Therefore it is 
concluded that not considering fluid coupling may give 
unconservative results, which should not be missed in 
the structural integrity assessment for the nuclear 
components. 
 The velocity PSDs at nodes for inner and outer 
shells are investigated, which shows that there are much 
differences of response PSDs between models. The 
amplitude and frequency depend on the modal 
characteristics which also depend on the existence of 
fluid and its modeling technique. The maximum 
deflections and equivalent stresses are summarized 
from the PSD analysis. As indicated in the table, the 
deflection and stress increase significantly when the 
fluid is included as an added mass in the model. If the 
fluid is not considered in the model, the responses are 
generally lowered. 
 The displacements at node where the pulse is 
applied and at node of the inner shell are investigated, 
which shows that there is a small difference of 
responses between models. The maximum deflections 
are summarized from the transient analysis. As 
indicated in the table, the deflection is almost the same 
irrespective of the fluid model. If the fluid is not 
considered in the model, the response after the pulse is 

applied decreases very rapidly. But if the fluid is 
considered, the response due to the pulse appears for a 
long time. As shown, there is no displacement at the 
node of the inner shell if the fluid is not included in the 
model because there is no load path from the outer shell 
where the pulse is applied to the inner shell via 
couplings between shell and fluid. 
 The same kind of transient analyses are performed 
for the 2-dimensional axisymmetric model. The 
displacements at corresponding nodes are investigated. 
By comparing displacements between 3-dimensional 
and 2-dimensional models, it is not clear that the 2-
dimensional axisymmetric model can simulate the 
transient analysis. 
 The displacements and velocities from the harmonic 
analysis at node where the unit load is applied are 
investigated, which shows that there is a difference of 
responses between models due to the different modal 
characteristics. If the fluid is not considered in the 
model, the responses are generally lower than those for 
the model with fluid. But if the fluid is considered, the 
responses are almost the same irrespective of the fluid 
model representations such as added mass or fluid mass. 

 
4. Conclusions 

 
•  The effect of fluid on the frequencies is more 

significant for out-of-phase mode and inner shell 
than in-phase mode and outer shell, respectively. 

•  Representing fluid by added mass gives higher 
frequencies for in-phase modes and lower 
frequencies for out-of-phase modes. 

•  Axisymmetric-harmonic element is found to be a 
very efficient one to investigate the modal 
characteristics, suggesting the use of this element 
instead of 3-dimensional element for modal analysis. 

•  Axisymmetric model is not recommended for the 
dynamic analysis except modal analysis. 

•  Not considering fluid coupling effect besides added 
mass for the response spectrum, PSD, transient and 
harmonic analyses may give unconservative results, 
which should not be neglected in the structural 
integrity assessment for the nuclear components. 
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