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1. Introduction 
 

Pressure tube (PT) creep is one of the principal aging 
mechanisms governing the heat transfer and hydraulic 
degradation of the heat transport system (HTS) in 
CANada Deuterium Uranium (CANDU) reactors. PT 
diametral creep affects the thermal hydraulic 
characteristics of coolant channels and the critical heat 
flux (CHF). CHF is a key parameter in determining the 
critical channel power (CCP), which is used in the trip 
setpoint calculations of regional overpower protection 
(ROP) systems. Therefore, it is important to predict the 
PT diametral creep in CANDU reactors. PT diametral 
creep is mainly caused by fast neutron irradiation, 
applied stress and temperature. 

The objective of this paper is to predict the PT 
diametral creep using the measured signals of the HTS 
by applying fuzzy-neural networks (FNNs) according 
to operating conditions. 

 
2. Fuzzy Neural Networks 

 
2.1 Subtractive Clustering-Based Fuzzy Model 
 
The fuzzy model is constructed from a collection of 

fuzzy if-then rules. A Takagi-Sugeno type of fuzzy 
inference system [1] is used where the i -th fuzzy rule 
for -th time instant data is described as follows: k
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The fuzzy model can be designed through clustering 
of numerical data. A subtractive clustering (SC) method 
is used to identify a fuzzy model and assumes the 
availability of input/output training data 

 where , 

. When the clustering method is applied 
to the collection of input/output data, each cluster 
center is in essence a prototypical data point that 
exemplifies the characteristic behavior of the system, 
and each cluster center can be used as the basis of a 
fuzzy rule that describes the system behavior.  
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The method starts by generating a number of clusters 
in the m  dimensional input space. The SC method 
considers each data point as a potential cluster center 
and uses a measure of the potential of each data point, 
which is defined as a function of the Euclidean 

distances to all other input data points. It is assumed 
that the data points are normalized in each dimension. 
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vector  to a cluster center  can be defined as 
follows: 
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The fuzzy model output  is calculated by the 
weighted average of the consequent parts of the fuzzy 
rules as follows: 
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The function ( )( )if kx  is a polynomial in the input 
variables. When the fuzzy the output is of the form 
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Therefore, the output of the fuzzy model given by Eq. 
(3) can be rewritten as 
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2.2 Training the Fuzzy Model 
 
The optimization of the fuzzy model is accomplished 

by a genetic algorithm combined with a least-squares 
method. The genetic algorithm is used to optimize the 
membership functions to be determined from the cluster 
radii, rα  and rβ , for the subtractive clustering of 
numerical data, and the least squares algorithm is used 
to calculate the consequent parameters,  and . ijq ir

Genetic algorithms require a fitness function that 
assigns a score to each chromosome in the current 
population, maximizing the fitness function value. The 
fitness function evaluates the extent to which each 
candidate solution is suitable for specified objectives.  

 
3. Uncertainty Analysis of the FNN Model 

 
3.1 Statistical Method 
 
The statistical uncertainty analysis works by 

generating many bootstrap samples of the training data 
set and retraining the FNN model parameters on each 
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bootstrap sample. After repetitive sampling and training, 
the resulting predictions provide a distribution for the 
output value. This distribution can be used to calculate 
prediction intervals. In this study, the bootstrap pairs 
sampling algorithm which is one of statistical methods 
is used. The available data is divided into development 
data and test data [2].  

The estimate with a 95% confidence interval for an 
arbitrary test input  is  0x
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3.2 Analytic Method 
 
The variance of the predicted output can be estimated 

as follows [2]: 
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The matrix F is called the Jacobian matrix of first 
order partial derivatives with respect to the parameters 
determined from the least squares. The estimate with a 
95% confidence interval is 
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4. Application  

 
The used data consist of a total of 240 input-output 

data pairs ( )1 4, , , rx x y  which were taken from the 
Wolsung nuclear power plants. These data were 
acquired at 1501, 1944, and 3256 effective full power 
days (EFPDs). The acquired data was divided into two 
types of data at first; development data and test data. 
The test data set was determined first before the training 
data sets were selected. The 30 test data were selected 
among the acquired data. Also, the training data was 
selected using the SC scheme among the pool of 
development data after the test data was removed from 
all acquired data. The verification data consists of all 
the remaining data after removal of the test data. In this 
paper, the verification data was used to prevent 
overfitting and also to calculate the prediction interval. 
Actually the verification data is the development data.  

Table 1 summaries the estimation results of the PT 
diametral creep by the FNN and Table 2 shows RMS 
errors according to operation time of which magnitudes 
do not depend on the operation time.  

Figure 1 shows the predicted errors for the test data 
and their prediction intervals. The prediction intervals 
by the analytical uncertainty method are a little wider 
than those of the statistical uncertainty method. 

 
5. Conclusions 

 
In this paper, an FNN was developed to estimate the 

PT diametral creep in CANDU reactors. The developed 
FNN was applied to the Wolsung nuclear power plants 
in Korea. The FNNs were trained using a data set 
prepared for training and verification and were tested 

using another data set (test data) that differed from the 
training data and the verification data. The RMS errors 
of the PT diameter are 0.0576mm for the verification 
data and 0.0462mm for the test data, which indicates 
that the proposed FNN method is very accurate. Also, 
through the uncertainty analysis of the FNN model, 
estimates with a 95% confidence level were obtained 
for test data points by performing the analytic and 
statistical uncertainty analyses. 
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Table 1. Performance of the FNN model 

Data type RMS error
(mm) 

Maximum 
error (mm) 

Number of data 
points 

Training data 0.0562 0.1437 150 

Verification 
data 0.0576 0.1437 210 

Test data 0.0462 0.0904 30 

 

Table 2. RMS errors and average diameters according to 
operation time 

Operation 
time 

(EFPD) 

RMS error (mm) Average diameter (mm)

Verification 
data 

Test 
data 

Verification 
data 

Test 
data 

1501.04 0.0590 0.0474 104.4369    104.3980

1943.71 0.0526 0.0460 104.6152 104.5655

3255.53 0.0599 0.0386 105.0689 104.9180
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Fig. 1. Predicted errors and intervals by the statistical and 
analytical methods 
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