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1. Introduction 

 
Some of thermal hydraulics codes for multi-

dimensional two-phase flow analysis use the non-

conservative form of the momentum equations. For 

example, the three-dimensional thermal hydraulic 

modules of the system codes, such as RELA5-3D [1], 

MARS [2], TRAC-PF1 [3], and TRACE [4], use the 

non-conservative form. Fine-scale two-phase flow codes, 

such as the NEPTUNE CFD [5] and ACE-3D codes [6], 

also adopt the non-conservative form. Meanwhile, the 

computational fluid dynamics codes, such as FLUENT 

[7], CFX [8], and STAR-CD [9], use the conservative 

form of the momentum equations. 

From a mathematical point of view, the momentum 

equations in the non-conservative form are equal to 

those in the conservative form. However, they are 

different in numerical integrations. This difference may 

evoke inaccurate numerical solutions under some two-

phase flow conditions. In this paper, we suggest the use 

of momentum equations in a semi-conservative form 

[10] instead of the non-conservative form, which is 

close to the conservative form but still maintains the 

advantage of the non-conservative form 

 

2. Various Forms of the Momentum Equations 

 

The above-mentioned codes use the two-fluid model 

for two-phase flows. The momentum equation of k-

phase in a conservative form is 
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where 
kF


 includes the pressure gradient, viscous and 

turbulent shear forces, body force, and interfacial forces. 

The continuity equation of k-phase is 

( ) ( )k k k k k ku
t
   


  



 ,                                       (2) 

where 
k


 is the interfacial mass transfer rate per 

volume. In the above-mentioned codes, the momentum 

equations in a conservative form are expanded so that 

they are solved in a non-conservative form and the 

velocity of each phase is used as a primary unknown. 

Expanding the left-hand side (LHS) of Eq. (1) and 

substituting Eq. (2) into Eq. (1) yields the momentum 

equations in the non-conservative form: 
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Equation (3) can be used to advance the velocity 

components directly, instead of 
kkk u


 . Integrating the 

convection term of Eq. (1) over a control volume is 

clearly defined. However, the integration of the second 

term in the LHS of Eq. (3) requires some assumptions, 

such as the use of the cell-centered approach for
kkk u


 . 

This difference may evoke inaccurate numerical 

solutions under some two-phase flow conditions.  

Jeong et al. [10] investigated this problem and 

suggested a new discretization method, which is based 

on the conservative form of the momentum equations. 

This yielded improved numerical results for 

heterogeneous two-phase flows. Recently Park et al. 

[11] suggested the use of a semi-conservative form of 

the momentum equations to resolve this problem. In this 

approach, only the temporal term of Eq. (1) is expanded 

and the continuity equation, Eq. (2), is substituted. Then 

we obtain the semi-conservative form:  
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Numerically integrating Eq. (4), the second term in the 

LHS entails no error and the third term yields small 

error. However, this integration error is generally 

smaller than that for integrating the second term in the 

LHS of Eq. (3). It is noted that, for a steady-state flow, 

Eq. (4) becomes Eq. (1), i.e., the semi-conservative 

form becomes the conservative form. 

Comparing the two methods mentioned above, they 

are basically same. For example, in the case of positive-

direction flow in x- and y-directions (see Fig. 1), the 

new discretization method, based on the conservative 

form [10], gives:   
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Meanwhile, by using the semi-conservative form, we 

can obtain the following discretized equation [11]:  
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Only the coefficients of the second term in Eq. (5) and 

(6) are different. This is due to neglecting the second-

order terms in the course of deriving Eq. (5). Otherwise, 

Eq. (5) and Eq. (6) are exactly the same.  

 

 
Fig. 1. The computational grid. 
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3. Comparison of the Numerical Results 

 

The effects of the form of momentum equations were 

assessed against various conceptual problems using the 

CUPID code [11]. For single-phase flows, both the non-

conservative and conservative form yield almost the 

same results. However, for two-phase flow, the results 

were significantly different especially for heterogeneous 

two-phase flows. Two examples are presented below.  

 

3.1 Air-water phase separation 

A conceptual phase separation problem was 

calculated. A two-dimensional vertical plane with 1 m 

in height and 1 m in width is considered. Uniform 80 x 

80 meshes were used for this problem. Initially, the 

vertical plane is filled with a homogeneous two-phase 

mixture with a void fraction of 0.5. At t=0 s, the fluid is 

set in motion by gravity: the gas phase goes up and the 

liquid moves down. At t=4.8 s, the phase separation is 

completed. Figure 2 compares void distributions at 

x=0.5 m. The solutions with the semi-conservative form 

are closer to the analytical solutions.  
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Fig. 2. Void distributions of the phase separation problem. 

 

3.2 Cavitations with a sudden contraction 

Cavitations with a sudden contraction was simulated. 

Figure 3 (a) shows the schematic of the computational 

grid. The length and height of the left and right parts are 

(0.016 m x 0.02304 m) and (0.032 m x 0.008 m), 

respectively. The entire domain was modeled with 3875 

cells. The left and the right ends are the pressure 

boundaries with 0.5 MPa and 0.095 MPa, respectively. 

Other boundaries are walls with no-slip conditions. The 

water temperature is 346.1 K. These flow conditions 

were chosen so that cavitations occur near the throat.  

This problem was also simulated by using the 

FLUENT code which has a two-fluid model with the 

fully conservative form of momentum equations. 

Figures 3 (b) through (d) show the steady-state void 

distributions of the three calculations. Cavitations occur 

near the throat after flow separation at the sharp edge. 

The result of the semi-conservative form is similar to 

that of FLUENT: the void fraction near the walls 

increases to the maximum at x = ~0.0034 m. Maximum 

local void fractions of the semi-conservative CUPID 

and FLUENT codes are 0.91 and 1.0, respectively. 

Figure 3 (d) shows the void distribution with the non-

conservative form is quite different from the others. 

         
(a) Computational grid               (b) FLUENT 

 
(c) CUPID: Semi-conservative     (d) CUPID: Non-conservative 

Fig. 3. Computational grid and steady-state void distributions. 

 

4. Conclusions 

 

The numerical effects of the form of the momentum 

equations have been investigated, and the use of 

momentum equations in a semi-conservative form 

instead of the non-conservative form was suggested. To 

study the numerical effects, various conceptual 

problems were simulated and the advantages of the 

semi-conservative form against the non-conservative 

form were clearly shown. The semi-conservative form 

can be easily implemented in any two-phase code that 

uses the non-conservative form of the momentum 

equation. Furthermore, this can be easily adapted into 

structured or non-structured grids. Therefore, the semi-

conservative form of the momentum equations is 

recommended for the two-phase flow codes that adopt 

the non-conservative form.  

 

Acknowledgement 
 

This work was supported by Nuclear Research & 

Development Program of the KOSEF (Korea Science and 

Engineering Foundation) grant funded by the MEST 

(Ministry of Education, Science and Technology) of the 

Korean government (Grant code: M20702040002-08M0204-

00210). 

 

References 

 
[1] The RELAP5-3D code development team, RELAP5-3D 

code manual volume I, INEEL, 2001. 

[2] J.J. Jeong et al., Annals Nucl. Energy 26, no. 18, 1611-

1642 (1999). 

[3] J.W. Spore et al., TRAC-PF1/MOD2 Volume I. 

NUREG/CR-5673, LANL, 1993. 

[4] TRACE V5.0, Theory manual, U.S. NRC, 2000. 

[5] A. Guelfi et al., Nucl. Sci. Eng. 156 (3), 281-324 (2007).  

[6] H. Yoshida et al.,  Nucl. Tech. 164, 45-54 (2008). 

[7] FLUENT 6.3, User's guide, FLUENT Inc., 2006.  

[8] ANSYS CFX-Solver, Release 10.0: Theory, ANSYS Inc., 

2005. 

[9] STAR-CD version 4.0, STAR-CD Methodology, CD-

adapco, 2006. 

[10] J.J. Jeong et al., Nucl. Tech. 117, 267-280 (1997). 

[11] I.K. Park et al., Nucl.  Eng. Des. (2009), doi:10.1016/j. 

nucengdes. 2009.06.011.  

 


	분과별 논제 및 발표자

	PNO0: - 411 -
	PNO1: - 412 -


