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1. Introduction 
 

Since welding residual stress is a major factor in the 
generation of Primary Water Stress Corrosion Cracking 
(PWSCC), it is essential to examine the welding 
residual stress to prevent PWSCC. In order to predict 
this residual stress, several artificial intelligence 
methods have been developed and used as a powerful 
tool in nuclear engineering fields. In this study, two 
data-based models, support vector regression (SVR) 
and fuzzy neural network (FNN), were used to analyze 
the residual stress for dissimilar metal welding under a 
variety of welding conditions. The data was obtained in 
a previous study [1] by performing FEAs under various 
welding conditions, such as pipeline shapes, welding 
heat input, welding metal strength and the constraint of 
the pipeline end parts. 

This paper deals partly with regression models 
using FNN [1] and SVR [2] to easily predict the 
residual stress in the dissimilar metal welding for 
pipelines at nuclear power plants (NPPs). This paper 
also builds on previous studies [1-2] to analyze the 
uncertainty of a residual stress prediction using 
artificial intelligence methods. 

 
2. Data-based Models for Residual Stress Prediction 
 
2.1 Fuzzy Neural Network 
 

In fuzzy inference modeling, it is relatively easy to 
set up rough fuzzy rules on a target system by intuition 
if its dynamics are well understood. However, fine-
tuning of the fuzzy rules to improve modeling 
performance is quite difficult. Therefore, an FNN, 
which can incorporate fuzzy inference models with 
neural networks, was developed [1]. Since a cluster 
center is essentially a prototypical data point that 
exemplifies a characteristic behavior of a target system, 
a complete FNN can be developed, on the basis of the 
results of a subtractive clustering (SC) technique [1]. 

The output of the fuzzy inference model can be 
written as follows: 
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2.2 Support Vector Regression (SVR) 
 

An SVR model searches for the network weights of 
an artificial neural network with a kernel function by 

solving the non-convex unconstrained minimization 
problem. The hypothesis space of the linear functions is 
performed using an SVR model in multidimensional 
feature space. The basic concept of SVR is to 
nonlinearly map the original input data x  into high 
dimensional feature space φ . The unknown function 
can be solved by determining the coefficients of the 
basis function of linear expansion. The support vector 
approximation is expanded as follows [2]: 
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b

 is called the feature, and the 
parameters  and  are the support vector weight and 
bias, respectively, which are calculated by minimizing 
the following regularized risk function [3]: 
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The constrained optimization problem can be solved 
by applying the Lagrange multiplier technique. The 
regression function of Eq. (2) can be expressed as 
follows: 
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3. Uncertainty Analysis 

 
3.1 Statistical Method 
 

The bootstrap pairs sampling algorithm [4] was 
used to analyze the uncertainties of the data-based 
models. The available data was classified into 
development and test data. The pool of development 
data stands for all available data except for a predefined 
set of fixed test data. The development data was 
composed of a large pool of data from which the 
training and optimization samples could be drawn. 
Statistical uncertainty analysis was carried out by 
generating many bootstrap samples of the training data 
set and retraining the data-based model parameters on 
each bootstrap sample. After sampling from the 
development data and training using the sampled data 
repeatedly, the resulting predictions can provide the 
output value with a distribution. This distribution 
enables the prediction intervals to be calculated. 
 
3.2 Analytical Method 
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The regression models of , can be expressed as  ox
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For a regression model of an observation, , which is 
not a part of the training data, the output prediction is 
given by the following: 
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The output prediction can be approximated according to 
the Taylor series expansion of the output prediction to 
the first order as follows: 
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The prediction error can be calculated using the 
following: 
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The variance-covariance matrix can be estimated as 
follows if the parameter is assumed to be estimated 
explicitly using the well-known squared error 
minimization technique [4]: 
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The variance of the predicted output can be 
estimated as follows [4]: 
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4. Application to the Welding Residual Stress 

Prediction 
 

In a previous paper [1], a finite element model for 
analyzing the residual stress was presented, and the 
parametric FEAs were carried out by running the 
ABAQUS code to obtain the welding residual stress 
data under a variety of welding conditions. A dissimilar 
welding joint between a nozzle and pipe was assumed 
in the analyses (see Fig. 1) because it is highly 
susceptible to PWSCC in the primary system of nuclear 
power plants. 
 

 
 

Fig. 1. A welding zone of dissimilar metals and the prediction 
paths in the welding zone for data acquisition [1] 
 

Two types of models (FNN and SVR) used in this 
paper can be well trained using more informative data 
among all the data acquired. A SC scheme was applied 

to obtain informative data that epitomize a 
characteristic behavior of the system, and the chosen 
data was used as the training data set. When selecting 
the 60 training sample sets, the radius of the SC scheme 
was selected randomly in a specified range, which 
provides random sampling characteristics for the 
training data. The fixed test data set was determined 
first before the training data sets were selected. In 
addition, a genetic algorithm was used to optimize the 
FNN models. 

The welding residual stress could be predicted with 
an RMS error level of less than about 4% by the SVR 
models and about 7% by the FNN models. Therefore, 
these models can favorably predict the welding residual 
stress for any other welding condition if they are well 
trained and optimized with the training data and 
optimization data under various welding conditions and 
pipeline shapes 

 
5. Conclusions 

 
SVR and FNN models were developed to accurately 

predict the residual stress in dissimilar metals welding 
zones for pipelines at nuclear power plants. The two 
developed SVR and FNN models were applied to the 
numerical data obtained using FEAs. The welding 
residual stress could be predicted by the SVR and FNN 
models with an RMS error level < 4% and 
approximately 7%, respectively. The RMS errors of 
these models for the test data were similar to the RMS 
error for the optimization data. The estimates with a 
95% confidence interval were obtained for 65 test data 
points by performing analytical and statistical 
uncertainty analyses. The coverage corresponds 
approximately to the 95% confidence interval. 
Therefore, it is known that the prediction interval 
estimates provide the expected level of coverage. 
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