
Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2009

An Integrated Approach of Model checking and Temporal Fault Tree for System Safety
Analysis

Kwang Yong Koh∗ and Poong Hyun Seong

Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology,
 371-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea

*Corresponding author: goeric1@kaist.ac.kr

1. Introduction

Digitalization of instruments and control systems in
nuclear power plants offers the potential to improve
plant safety and reliability through features such as
increased hardware reliability and stability, and
improved failure detection capability. It however makes
the systems and their safety analysis more complex.
Originally, safety analysis was applied to hardware
system components and formal methods mainly to
software. For software-controlled or digitalized systems,
it is necessary to integrate both [1].

Fault tree analysis (FTA) which has been one of the
most widely used safety analysis technique in nuclear
industry suffers from several drawbacks as described in
[2]. In this work, to resolve the problems, FTA and
model checking are integrated to provide formal,
automated and qualitative assistance to informal and/or
quantitative safety analysis. Our approach proposes to
build a formal model of the system together with fault
trees. We introduce several temporal gates based on
timed computational tree logic (TCTL) to capture
absolute time behaviors of the system and to give
concrete semantics to fault tree gates to reduce errors
during the analysis, and use model checking technique
to automate the reasoning process of FTA.

2. Background

In this section, some of the techniques used in this

work such as model checking, temporal fault tree
analysis and so on are described.

2.1 Model Checking and UPPAAL

Model checking is the most usual formal verification

technique and a proven-effective and automated
technique in verifying complex behavior of concurrent
systems. A model checker, given the system description
and property specification, determines if the properties
hold in the model or not. Among several model
checkers being used in industry, we selected a real time
model checker UPPAAL [3] to support our approach
because it supports elaborate verification of time-
related system behavior with friendly graphic user
interface. The model checker will either terminate with
the answer true, indicating that the system model
satisfies the property, or false, indicating that the
system model dose not satisfy the property and provides
a counter example that shows an execution trace that

violates the property. The counter example is one of the
most useful features of model checking, as it allows
users to quickly understand why a property is not
satisfied.

2.2 Temporal Fault Tree

We developed several new temporal gates based on
TCTL to describe dynamic behaviors of system and
defined the temporal gates, some dynamic gates and
static gates in the previous work [2]. With these gates
we easily specify the temporal dependence between
events and preserve the simple, qualitative and visual
nature of the fault trees. Each temporal gate has it is
own usage. For example, the ‘continuity gate’ is useful
in the description of the situation where an event should
continue for at least particular time after the other event
has occurred and the corresponding expression in the
form of TCTL is EG[φ AG ≤α ψ] (ψ continues for at
least α time units after φ has occurred). Users could
easily understand the usages of other temporal gates
from the intuitive meaning in the definition of gates in
[2].

3. Case Study

We applied our approach to digital feedwater control

system (DFWCS) which is the benchmark system in [4]

3.1 DFWCS Modeling in UPPAAL

In UPPAAL, a system is modeled as a network of

several such timed automata in parallel. The model is
further extended with bounded discrete variables that
are part of the state. These variables are used as in
programming languages: they are read, written, and are
subject to common arithmetic operations. A state of the
system is defined by the locations of all automata, the
clock constraints, and the values of the discrete
variables. Every automaton may fire an edge
(sometimes misleadingly called a transition) separately
or synchronize with another automaton, which leads to
a new state. We made fifteen separated models (which
called ‘template’ in UPPAAL) for describing DFWCS
behavior. Some of the templates are for describing
corresponding components behaviors of DFWCS, and
others are additional templates for describing special
dependency between components, for example,
MFVC_PDI_Down template for hot spare dependency
between MFV controller and PDI.

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, October 29-30, 2009

3.2 Model Checking and Results

We made a fault tree of DFWCS based on the system

description and FMEA results in [4]. All the
information of a fault tree is translated into UPPAAL
query language for automatic verification. First, fault
tree gates are translated to corresponding UPPAAL
query language based on transition rules between TCTL
and CTL, and UPPAAL query language. After
completion of the translation process, the translated
fault tree information which is now system property
leading to unintended system state (hazardous state) is
verified by UPPAAL model checker against UPPAAL
system model implemented previously.

Through the verification process, we can verify the
property that ‘when MC watchdog timer is not reset
exactly t0 time units after watchdog timer started and
BC fails, if an operator can not intervene within t2 time,
DFWCS control fails at one time.

But the verification result of the property,
E<>(Sensors.InV_Soutputs imply MC.Down) is ‘the
property is not satisfied’. This is because DFWCS has a
kind of fault tolerant function where, even though
invalid inputs from sensors are inserted, computers do
not fail immediately and wait for one processing time
after invalid inputs from the sensors. We can conclude
more easily that the fault tree has flaws, and hence the
analysis result is also erroneous. The corrected fault
tree is shown in Figure 1. In the corrected fault tree,
‘Promptness gate’ is used to describe temporal
dependency between invalid sensor inputs and MC
failure because it is useful in the description of the
situation where an event occurs within particular time
after the other event has occurred. Therefore, with this
gate, we can describe the event that if valid inputs from
sensors are not inserted to computers within t1 (which
is one processing time) time unit after invalid inputs
from sensors, MC is down (or failed).

Fig. 1. Corrected fault tree of the partial fault tree

4. Conclusions

This paper demonstrated that the new temporal gates

are useful to capture dynamic behaviors of system
precisely and that model checking technique is helpful

when we validate the correctness of informal safety
analysis such as FTA. Our approach not only
formalizes the semantics of fault trees, but it also
extends the expressive power of FTA to model
temporal ordering of events. But the concept will need
further improvements and validation by larger scaled
case studies. The gates proposed here are not yet
sufficient to model all situations that arise in digitalized
systems. Thus we intend to add some new gates to our
framework, if necessary. In other for our method to
have any strength over other method reviewed in this
paper, the supporting tool to automate the proposed
method should be developed.

REFERENCES

[1] N.G. Leveson, Safeware: system safety and computers,
Addison- Wesley, New York, 1995.
[2] Kwang Yong Koh and Poong Hyun Seong, SACS2: A
Dynamic and Formal Approach to Safety Analysis for
Complex Safety Critical System, Proceedings of Nuclear
Plant Instrumentation, Control, and Human-Machine Interface
Technologies (NPIC&HMIT-2009), Knoxville, Tennessee,
April 5-9, 2009.
[3] B.Berard and et al., Systems and Software Verification
Model-Checking Techniques and Tools, Springer-Verlag,
Berlin Heidelberg, 2001.
 [4] T. Aldemir, M.P. and et al., Dynamic Reliability
Modeling of Digital Instrumentation and Control Systems for
Nuclear Reactor Probabilistic Risk Assessments,
NUREG/CR-6942, U.S. NRC, Washington, D.C., 2007.

	분과별 논제 및 발표자

	PNO0: - 813 -
	PNO1: - 814 -

