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1. Introduction 
 

Digitalization of instruments and control systems in 
nuclear power plants offers the potential to improve 
plant safety and reliability through features such as 
increased hardware reliability and stability, and 
improved failure detection capability. It however makes 
the systems and their safety analysis more complex. 
Originally, safety analysis was applied to hardware 
system components and formal methods mainly to 
software. For software-controlled or digitalized systems, 
it is necessary to integrate both [1]. 

Fault tree analysis (FTA) which has been one of the 
most widely used safety analysis technique in nuclear 
industry suffers from several drawbacks as described in 
[2]. In this work, to resolve the problems, FTA and 
model checking are integrated to provide formal, 
automated and qualitative assistance to informal and/or 
quantitative safety analysis. Our approach proposes to 
build a formal model of the system together with fault 
trees. We introduce several temporal gates based on 
timed computational tree logic (TCTL) to capture 
absolute time behaviors of the system and to give 
concrete semantics to fault tree gates to reduce errors 
during the analysis, and use model checking technique 
to automate the reasoning process of FTA. 

 
2. Background 

 
In this section, some of the techniques used in this 

work such as model checking, temporal fault tree 
analysis and so on are described. 

 
2.1 Model Checking and UPPAAL 

 
Model checking is the most usual formal verification 

technique and a proven-effective and automated 
technique in verifying complex behavior of concurrent 
systems. A model checker, given the system description 
and property specification, determines if the properties 
hold in the model or not. Among several model 
checkers being used in industry, we selected a real time 
model checker UPPAAL [3] to support our approach 
because it supports elaborate verification of time-
related system behavior with friendly graphic user 
interface. The model checker will either terminate with 
the answer true, indicating that the system model 
satisfies the property, or false, indicating that the 
system model dose not satisfy the property and provides 
a counter example that shows an execution trace that 

violates the property. The counter example is one of the 
most useful features of model checking, as it allows 
users to quickly understand why a property is not 
satisfied. 

 
2.2 Temporal Fault Tree 
 

We developed several new temporal gates based on 
TCTL to describe dynamic behaviors of system and 
defined the temporal gates, some dynamic gates and 
static gates in the previous work [2]. With these gates 
we easily specify the temporal dependence between 
events and preserve the simple, qualitative and visual 
nature of the fault trees. Each temporal gate has it is 
own usage. For example, the ‘continuity gate’ is useful 
in the description of the situation where an event should 
continue for at least particular time after the other event 
has occurred and the corresponding expression in the 
form of TCTL is EG[φ  AG ≤α ψ] (ψ continues for at 
least α time units after φ has occurred). Users could 
easily understand the usages of other temporal gates 
from the intuitive meaning in the definition of gates in 
[2]. 

 
3. Case Study 

 
We applied our approach to digital feedwater control 

system (DFWCS) which is the benchmark system in [4] 
 

3.1 DFWCS Modeling in UPPAAL 
 
In UPPAAL, a system is modeled as a network of 

several such timed automata in parallel. The model is 
further extended with bounded discrete variables that 
are part of the state. These variables are used as in 
programming languages: they are read, written, and are 
subject to common arithmetic operations. A state of the 
system is defined by the locations of all automata, the 
clock constraints, and the values of the discrete 
variables. Every automaton may fire an edge 
(sometimes misleadingly called a transition) separately 
or synchronize with another automaton, which leads to 
a new state. We made fifteen separated models (which 
called ‘template’ in UPPAAL) for describing DFWCS 
behavior. Some of the templates are for describing 
corresponding components behaviors of DFWCS, and 
others are additional templates for describing special 
dependency between components, for example, 
MFVC_PDI_Down template for hot spare dependency 
between MFV controller and PDI. 
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3.2 Model Checking and Results 

 
We made a fault tree of DFWCS based on the system 

description and FMEA results in [4]. All the 
information of a fault tree is translated into UPPAAL 
query language for automatic verification. First, fault 
tree gates are translated to corresponding UPPAAL 
query language based on transition rules between TCTL 
and CTL, and UPPAAL query language. After 
completion of the translation process, the translated 
fault tree information which is now system property 
leading to unintended system state (hazardous state) is 
verified by UPPAAL model checker against UPPAAL 
system model implemented previously. 

Through the verification process, we can verify the 
property that ‘when MC watchdog timer is not reset 
exactly t0 time units after watchdog timer started and 
BC fails, if an operator can not intervene within t2 time, 
DFWCS control fails at one time. 

But the verification result of the property, 
E<>(Sensors.InV_Soutputs  imply MC.Down) is ‘the 
property is not satisfied’. This is because DFWCS has a 
kind of fault tolerant function where, even though 
invalid inputs from sensors are inserted, computers do 
not fail immediately and wait for one processing time 
after invalid inputs from the sensors. We can conclude 
more easily that the fault tree has flaws, and hence the 
analysis result is also erroneous. The corrected fault 
tree is shown in Figure 1. In the corrected fault tree, 
‘Promptness gate’ is used to describe temporal 
dependency between invalid sensor inputs and MC 
failure because it is useful in the description of the 
situation where an event occurs within particular time 
after the other event has occurred. Therefore, with this 
gate, we can describe the event that if valid inputs from 
sensors are not inserted to computers within t1 (which 
is one processing time) time unit after invalid inputs 
from sensors, MC is down (or failed). 

 

 
 
Fig. 1. Corrected fault tree of the partial fault tree 

 
4. Conclusions 

 
This paper demonstrated that the new temporal gates 

are useful to capture dynamic behaviors of system 
precisely and that model checking technique is helpful 

when we validate the correctness of informal safety 
analysis such as FTA. Our approach not only 
formalizes the semantics of fault trees, but it also 
extends the expressive power of FTA to model 
temporal ordering of events. But the concept will need 
further improvements and validation by larger scaled 
case studies. The gates proposed here are not yet 
sufficient to model all situations that arise in digitalized 
systems. Thus we intend to add some new gates to our 
framework, if necessary. In other for our method to 
have any strength over other method reviewed in this 
paper, the supporting tool to automate the proposed 
method should be developed. 

 
REFERENCES 

 
[1] N.G. Leveson, Safeware: system safety and computers, 
Addison- Wesley, New York, 1995. 
[2] Kwang Yong Koh and Poong Hyun Seong, SACS2: A 
Dynamic and Formal Approach to Safety Analysis for 
Complex Safety Critical System, Proceedings of Nuclear 
Plant Instrumentation, Control, and Human-Machine Interface 
Technologies (NPIC&HMIT-2009), Knoxville, Tennessee, 
April 5-9, 2009. 
[3] B.Berard and et al., Systems and Software Verification 
Model-Checking Techniques and Tools, Springer-Verlag, 
Berlin Heidelberg, 2001. 
 [4] T. Aldemir, M.P.  and et al., Dynamic Reliability 
Modeling of Digital Instrumentation and Control Systems for 
Nuclear Reactor Probabilistic Risk Assessments, 
NUREG/CR-6942, U.S. NRC, Washington, D.C., 2007. 
 


	분과별 논제 및 발표자

	PNO0: - 813 -
	PNO1: - 814 -


